SURFACE MOUNT 1.0 AMP HIGH VOLTAGE NEGATIVE ADJUSTABLE REGULATOR

Three Terminal, High Voltage, Precision Adjustable Negative Voltage Regulator In A Hermetic Surface Mount Package

FEATURES

- Hermetic Surface Mount Package
- Adjustable Output Voltage
- Built-In Thermal Overload Protection
- Short Circuit Current Limiting
- Product Is Available Hi-Rel Screened
- Type Com. Cr Electrically Similar To Industry Standard Type LM137HV

DESCRIPTION

This three terminal negative regulator is supplied in a hermetically sealed surface mount package. All protective features are designed into the circuit, including thermal shutdown, current limiting and safe-area control. With heat sinking, they can deliver 1.0 amp of output current. This unit features output voltages that can be trimmed using external resistors, from -1.2 volts to -47 volts.

ABSOLUTE MAXIMUM RATINGS @ 25°C

Power Dissipation (P _d) (Internally Limited)	10 W
Input - Output Voltage Differential	50 V
Operating Junction Temperature Range	- 55°C to + 150°C
Storage Temperature Range	- 65°C to + 150°C
Lead Temperature (Soldering 10 Seconds)	280°C
Thermal Resistance: Junction-to-Case	10.5°C/W

MECHANICAL OUTLINE

3.5 - 1034 11 R0

OM7612SM

ELECTRICAL CHARACTERISTICS -55°C T_A 125°C, I_I = 8mA (unless otherwise specified)

Parameter	Symbol	Test Conditions		Min.	Max.	Unit
Reference Voltage	V _{REF}	V _{DIFF} 3.0V, T _A = 25°C		-1.30	-1.20	
		$ V_{DIFF} = 3V$	•	-1.30	-1.20	V
		$ V_{DIFF} = 50V, T_A = 25^{\circ}C$		-1.30	-1.20	
		$ V_{\text{DIFF}} = 50V$	•	-1.30	-1.20	
Line Regulation	R _{LINE}	$3.0 \text{ V } V_{\text{DIFF}} 50V, T_{A} = 25^{\circ}C$		-12	12	m\/
(Note 1)			•	-30	30	mV
Load Regulation	R _{LOAD}	$ V_{DIFF} = 50V, 8mA I_L 110mA$		-30	30	
(Note 1)		$T_A = 25^{\circ}C$				
		$ V_{DIFF} = 5V$, 8mA $ I_L $ 1.0A, $ T_A = 25$ °C		-30	30	mV
			•	-50 🔬	50	
Thermal Regulation	V _{RTH}	$V_{IN} = -14.6V, I_{L} = 1.0A$		-16	16	mV
		$P_d = 20$ Watts, $t = 10$ ms, $T_A = 25$ °C		DE 34	2	IIIV
Ripple Rejection	R _N	$f = 120 \text{ Hz}, V_{OUT} = V_{ref}$	ŀ	66		dB
(Note 2)		$C_{Adj} = 10 \mu F, I_{OUT} = 100 \text{ mA}$		100		ub
Adjustment Pin Current	I _{Adj}	$ V_{DIFF} = 3.0V$	•	9	100	
		$ V_{\text{DIFF}} = 40V$	•		100	μA
		$ V_{\text{DIFF}} = 50V$	•		100	
Adjustment Pin	I _{Adj}	$ V_{DIFF} = 5V, 8mA I_{OUT} 1.0A$	•	-10	10	μА
Current Change		3V V _{DIFF} 50V	•	-10	10	
Miminum Load Current	I _{Lmin}	$ V_{\text{DIFF}} = 3.0V$, $V_{\text{OUT}} = -1.4V$ (forced)	•		10	
		$ V_{\text{DIFF}} = 10V$, $V_{\text{OUT}} = -1.4V$ (forced)	•		10	mA
		$ V_{\text{DIFF}} = 40V, V_{\text{OUT}} = -1.4V \text{ (forced)}$	•		10	
		$ V_{DIFF} = 50V$, $V_{OUT} = -1.4V$ (forced)	•		10	
Current Limit (Note 2)	I _{CL}	V _{DIFF} = 50V, T _A = 25°C		0.2	1.0	А

- Notes:

 1. Load and Line Regulation are specified at a constant junction temperature. Pulse testing with low duty cycle is used. Changes in output voltage due to heating effects must be taken into account separately.
- 2. If not tested, shall be guaranteed to the specified limits.
- 3. The ullet denotes the specifications which apply over the full operating temperature range.

