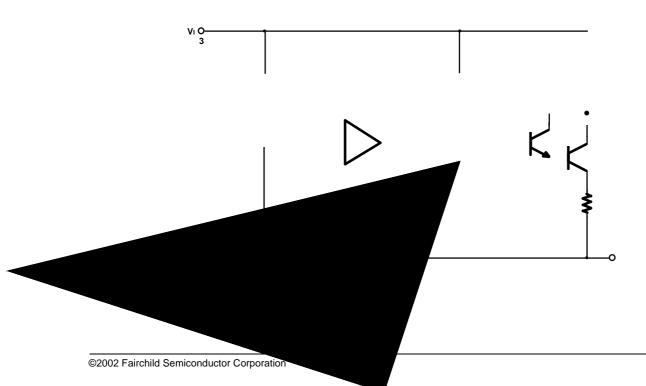


Features


- Maximum Output Current of 100mA
- Output Voltage of 5V
- Thermal Overload Protection
- Short Circuit Current Limiting
- Output Voltage Offered in ±5% Tolerance

Description

The MC78L05AB series of fixed voltage monolithic integrated circuit voltage regulators are suitable for application that required supply current up to 100mA.

Internal Block Diagram

Absolute Maximum Ratings

(Ta=25°C, Unless otherwise noted, Note 5)

Parameter	Symbol	Value	Unit
Input Voltage	VI	30	V
Maximum Operating Junction Temperature	TJ	+150	°C
Storage Temperature Range	TSTG	-65 ~ +150	°C

Electrical Characteristics

(VI = 10V, IO = 40mA, -40°C \leq TJ \leq 125°C, CI = 0.33 μ F, CO = 0.1 μ F, unless otherwise specified. (Note 1))

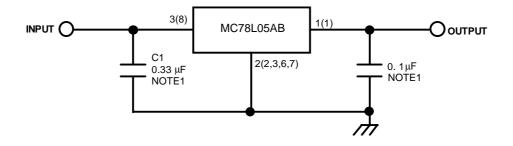
Parameter		Symbol	Conditions		Min.	Тур.	Max.	Unit
Output Voltage	but Voltage VO $TJ = 25^{\circ}C$		4.8	5.0	5.2	V		
Line Regulation (Note1)		ΔVο	TJ = 25°C	$7V \le VI \le 20V$	-	8	150	mV
				$8V \le VI \le 20V$	-	6	100	mV
Load Regulation (Note1)		ΔV_{O} TJ = 25°C	$1mA \le IO \le 100mA$	-	11	60	mV	
			$IJ = 25^{\circ}C$	$1mA \le I_O \le 40mA$	-	5.0	30	mV
Output Voltage		Vo	$7V \leq V_I \leq 20V$	$1 \text{mA} \le I_{O} \le 40 \text{mA}$	-	-	5.25	V
			7V ≤VI ≤ V _{MAX} (Note 2)	1mA ≤ IO ≤ 70mA	4.75	-	5.25	V
Quiescent Current		lq	TJ = 25°C	60	-	2.0	5.5	mA
Quiescent Current Change	with line	ΔlQ	8V ≤VI ≤ 20V		-	-	1.5	mA
	with load	ΔlQ	$1\text{mA} \le I_0 \le 40 \text{ mA}(\text{Note3})$		-	-	0.5	mA
Output Noise Voltage	tput Noise Voltage(Note3) VN $T_A = 25^{\circ}C$, $10Hz \le f \le 100kHz$		-	40	-	μV/Vo		
Temperature Coefficient of Vo (Note3)		ΔVΟ/ΔΤ	IO = 5mA		-	-0.65	-	mV/°C
Ripple Rejection(Not	Ripple Rejection(Note3,4)RRf = 120Hz, $8V \le V_I \le 18V$, $T_J = 25^{\circ}C$		41	80	-	dB		
Dropout Voltage		VD	TJ = 25°C		-	1.7	-	V

Note:

1. The maximum steady state usable output current and input voltage are very dependent on the heat sinking and/or lead length of the package. The data above represent pulse test conditions with junction temperature as indicated at the initiation of tests.

2. Power dissipation $P_D \leq 0.75 W.$

3. These parameters although guaranteed over the recommended operating conditions are not 100% tested in production.


4. Recommend minimum load capacitance of 0.01uF to limit high frequency noise.

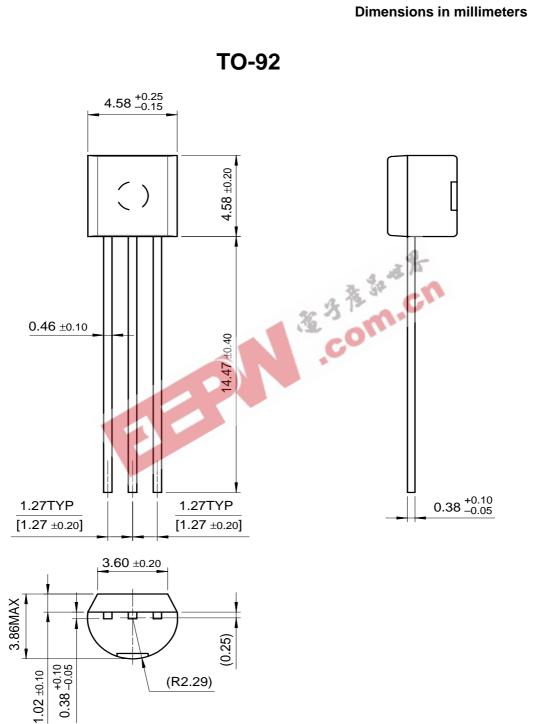
5. Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Electrical specifications do not apply when operating the device outside of its stated operating conditions.

* CI is required if regulator is located an appreciable distance from power supply filter.

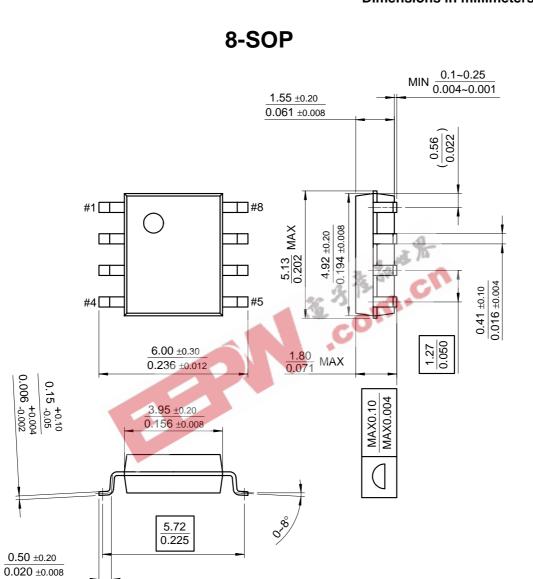
** C_0 is not needed for stability; however, it does improve transient response.

Typical Application

'()': 8SOP Type


Note:

1. Bypass Capacitors are recommend for optimum stability and transient response and should be located as close as possible to the regulator


Mechanical Dimensions

Package

Mechanical Dimensions (Continued)

Package

Dimensions in millimeters

Ordering Information

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com