

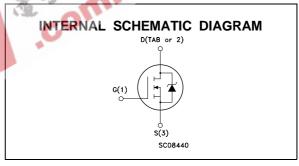
STDID5B

N - CHANNEL 55V - 0.1 Ω - 12A TO-252 STripFETTM POWER MOSFET

PRELIMINARY DATA

TYPE	V _{DSS}	R _{DS(on)}	I _D	
STDID5B	55 V	< 0.12 Ω	12 A	

- TYPICAL $R_{DS(on)} = 0.1 \Omega$
- APPLICATION ORIENTED **CHARACTERIZATION**
- ADD SUFFIX "T4" FOR ORDERING IN TAPE & REEL


DESCRIPTION

This Power MOSFET is the latest development of STMicroelectronics unique "Single Feature SizeTM" strip-based process. The resulting transistor shows extremely high packing density for low on-resistance, rugged avalanche characteristics and less critical alignment steps therefore a remarkable manufacturing reproducibility.

APPLICATIONS

- DC MOTOR CONTROL
- DC-DC & DC-AC CONVERTERS

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source Voltage (V _{GS} = 0)	55	V
V_{DGR}	Drain- gate Voltage ($R_{GS} = 20 \text{ k}\Omega$)	55	V
V _{GS}	Gate-source Voltage	± 20	V
I _D (*)	Drain Current (continuous) at T _c = 25 °C	12	Α
I _D	Drain Current (continuous) at T _c = 100 °C	8	Α
I _{DM} (•)	Drain Current (pulsed)	48	Α
P _{tot}	Total Dissipation at T _c = 25 °C	35	W
	Derating Factor	0.23	W/°C
E _{AS} ⁽¹⁾	Single Pulse Avalanche Energy	25	mJ
T _{stg}	Storage Temperature	-65 to 175	°C
Tj	Max. Operating Junction Temperature	175	°C

^(•) Pulse width limited by safe operating area

(1) starting $T_j = 25$ °C, $I_D = 12A$, $V_{DD} = 30V$

New R_{DS(on)} spec. starting from July '98

1/6 May 2000

THERMAL DATA

F	R _{thj-case}	Thermal Resistance Junction-case	Max	4.3	°C/W
F	₹ _{thj-amb}	Thermal Resistance Junction-ambient Max		100	°C/W
	Ťι	Maximum Lead Temperature For Soldering P	urpose	275	°C

ELECTRICAL CHARACTERISTICS ($T_{case} = 25$ °C unless otherwise specified)

OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 250 \ \mu A$ $V_{GS} = 0$	55			V
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	$V_{DS} = Max Rating$ $V_{DS} = Max Rating$ $T_c = 125$ °C			1 10	μA μA
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 20 V			± 100	nA

ON (*)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$ $I_D = 250 \mu A$	2	3	4	>
R _{DS(on)}	Static Drain-source On Resistance	$V_{GS} = 10 \text{ V}$ $I_{D} = 9.6 \text{ A}$		0.1	0.12	Ω
I _{D(on)}	On State Drain Current	$V_{DS} > I_{D(on)} \times R_{DS(on)max}$ $V_{GS} = 10 \text{ V}$	12			Α

DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (*)	Forward Transconductance	$V_{DS} > I_{D(on)} \times R_{DS(on)max}$ $I_D = 10 \text{ A}$	4			S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	V _{DS} = 25 V f = 1 MHz V _{GS} = 0 V		360 55 25		pF pF pF

ELECTRICAL CHARACTERISTICS (continued)

SWITCHING ON

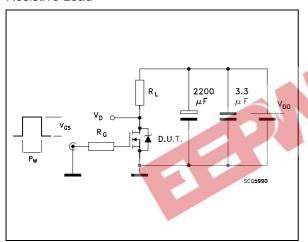
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on Delay Time Rise Time	$\begin{array}{c} V_{DD} = 30 \text{ V} & I_D = 6 \text{ A} \\ R_G = 4.7 \ \Omega & V_{GS} = 10 \text{ V} \\ \text{(Resistive Load, see fig. 3)} \end{array}$		10 25		ns ns
$egin{array}{c} Q_g \ Q_{gs} \ Q_{gd} \end{array}$	Total Gate Charge Gate-Source Charge Gate-Drain Charge	$V_{DD} = 48 \text{ V } I_{D} = 12 \text{ A } V_{GS} = 10 \text{ V}$		10 3.5 3.2	13.5	nC nC nC

SWITCHING OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(off)} t _f		$V_{DD} = 30 \text{ V}$ $I_D = 6 \text{ A}$ $R_G = 4.7 \Omega$ $V_{GS} = 10 \text{ V}$ (Resistive Load, see fig. 3)		31 8		ns ns


SOURCE DRAIN DIODE

Symbol	Parameter	Test Conditions Min.			Max.	Unit
I _{SD} I _{SDM} (•)	Source-drain Current Source-drain Current (pulsed)	4 1 4	S.W.		12 48	A A
V _{SD} (*)	Forward On Voltage	$I_{SD} = 12 \text{ A} V_{GS} = 0$	1		1.3	V
t _{rr}	Reverse Recovery Time	$I_{SD} = 12 \text{ A}$		38		ns
Q_{rr}	Reverse Recovery	(see test circuit, fig. 5)		61		nC
I _{RRM}	Charge Reverse Recovery Current			3.2		А


^(*) Pulsed: Pulse duration = 300 µs, duty cycle 1.5 %

(•) Pulse width limited by safe operating area

Fig. 1: Unclamped Inductive Load Test Circuit

Fig. 3: Switching Times Test Circuits For Resistive Load

Fig. 5: Test Circuit For Inductive Load Switching And Diode Recovery Times

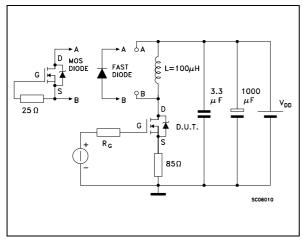


Fig. 2: Unclamped Inductive Waveform

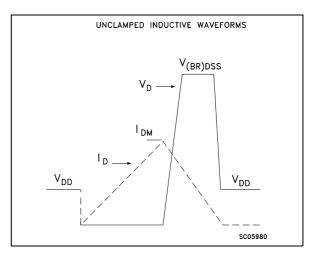
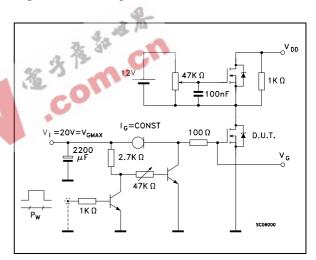
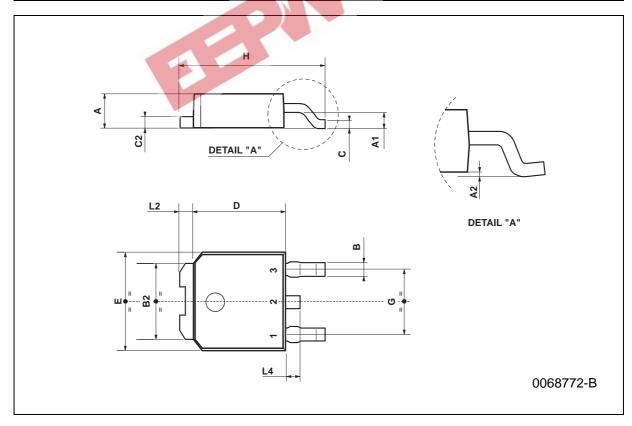




Fig. 4: Gate Charge test Circuit

TO-252 (DPAK) MECHANICAL DATA

DIM.		mm			inch		
5 11111	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А	2.2		2.4	0.086		0.094	
A1	0.9		1.1	0.035		0.043	
A2	0.03		0.23	0.001		0.009	
В	0.64		0.9	0.025		0.035	
B2	5.2		5.4	0.204		0.212	
С	0.45		0.6	0.017		0.023	
C2	0.48		0.6	0.019		0.023	
D	6		6.2	0.236		0.244	
Е	6.4		6.6	0.252	2_	0.260	
G	4.4		4.6	0.173	/10	0.181	
Н	9.35		10.1	0.368	C.	0.397	
L2		0.8		Olu	0.031		
L4	0.6		1	0.023		0.039	

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics

© 2000 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

477