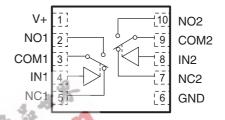
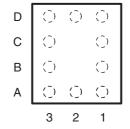

SCDS238C-MARCH 2007-REVISED FEBRUARY 2008

FEATURES


- Specified Break-Before-Make Switching
- Low ON-State Resistance (0.3 Ω Max)
- Low Charge Injection
- Excellent ON-State Resistance Matching
- Low Total Harmonic Distortion (THD)
- 1.65-V to 3.6-V Single-Supply Operation
- Control Inputs Are 1.8-V Logic Compatible
- Latch-Up Performance Exceeds 100 mA Per JESD 78. Class II
- ESD Performance Tested Per JESD 22
 - 2000-V Human-Body Model (A114-B, Class II)
 - 1000-V Charged-Device Model (C101)

APPLICATIONS


- Cell Phones
- PDAs
- Portable Instrumentation
- Audio and Video Signal Routing
- Low-Voltage Data-Acquisition Systems
- Communication Circuits
- Modems
- Hard Drives
- Computer Peripherals
- Wireless Terminals and Peripherals

YZP PACKAGE (TOP-THROUGH VIEW)

YZP PACKAGE TERMINAL ASSIGNMENTS

D	NO2	V+	NO1
С	COM2		COM1
В	IN2		IN1
Α	NC2	GND	NC1
	3	2	1

DESCRIPTION/ORDERING INFORMATION

The TS3A24159 is a dual single-pole double-throw (SPDT) analog switch that is designed to operate from 1.65 V to 3.6 V. It offers low ON-state resistance and excellent ON-state resistance matching with the break-before-make feature, to prevent signal distortion during the transferring of a signal from one channel to another. The device has excellent total harmonic distortion (THD) performance and consumes very low power. These features make this device suitable for portable audio applications.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

NanoFree is a trademark of Texas Instruments.

SCDS238C-MARCH 2007-REVISED FEBRUARY 2008

ORDERING INFORMATION

T _A	PACKAGE	(1)(2)	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	NanoFree™ (DSBGA) – YZP	Reel of 3000	TS3A24159YZPR	L87
–40°C to 85°C	VSSOP – DGS (MSOP)	Reel of 2500	TS3A24159DGSR	L8R
	SON - DRC	Reel of 3000	TS3A24159DRCR	ZWS

(1) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

SUMMARY OF CHARACTERISTICS(1)

Configuration	Dual 2:1 Multiplexer/Demultiplexer $(2 \times SPDT)$					
Number of channels	2					
ON-state resistance (ron)	0.3 Ω Max					
ON-state resistance match (Δr _{on})	0.05 Ω Max					
ON-state resistance flatness (r _{on(flat)})	0.04 Ω Max					
Turn-on/turn-off time (t _{ON} /t _{OFF})	20 ns/12 ns					
Break-before-make time (t _{BBM})	10 ns					
Charge injection (Q _C)	9 pC					
Bandwidth (BW)	23 MHz					
OFF isolation (O _{ISO})	-72 dB					
Crosstalk (X _{TALK})	−96 dB					
Total harmonic distortion (THD)	0.003%					
Power-supply current (I+)	15 nA					
Package options	10-pin MSOP, SON, DSBGA					

(1) V+ = 2.7 V, $T_A = 25^{\circ}C$

FUNCTION TABLE

IN	NC TO COM, COM TO NC	NO TO COM, COM TO NO
L	ON	OFF
Н	OFF	ON

Submit Documentation Feedback

⁽²⁾ For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

SCDS238C-MARCH 2007-REVISED FEBRUARY 2008

ABSOLUTE MAXIMUM RATINGS(1)(2)

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT	
V+	Supply voltage range ⁽³⁾		-0.5	3.6	V	
V _{NC} V _{NO} V _{COM}	Analog voltage range (3)(4)(5)		-0.5	V+ + 0.5	V	
I _{I/OK}	Analog port diode current	V_{NC} , V_{NO} , $V_{COM} < 0$	-50	50	mA	
I _{NC}	ON-state switch current	V_{NO} , V_{NO} , $V_{COM} = 0$ to V_{+}				
I _{NO} I _{COM}	ON-state peak switch current ⁽⁶⁾	V_{NC} , V_{NO} , $V_{COM} = 0$ to V+	-500	500	mA	
V_{I}	Digital input voltage range		-0.5	3.6	V	
I _{IK}	Digital input clamp current ⁽³⁾⁽⁴⁾	V ₁ < 0	-50		mA	
l+	Continuous current through V+			100	mA	
I_{GND}	Continuous current through GND		-100		mA	
		DGS package		165		
θ_{JA}	Package thermal impedance ⁽⁷⁾	DRC package		56.5	°C/W	
		YZP package		93		
T _{stg}	Storage temperature range	4 18 10	-65	150	°C	

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum
- All voltages are with respect to ground, unless otherwise specified.
- The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed. This value is limited to 5.5 V maximum.
- Pulse at 1-ms duration <10% duty cycle
- The package thermal impedance is calculated in accordance with JESD 51-7.

Copyright © 2007-2008, Texas Instruments Incorporated

Submit Documentation Feedback

SCDS238C-MARCH 2007-REVISED FEBRUARY 2008

ELECTRICAL CHARACTERISTICS FOR 3-V SUPPLY⁽¹⁾

V+ = 2.7 V to 3.6 V, $T_A = -40^{\circ}C$ to 85°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITION	S	T _A	V+	MIN	TYP	MAX	UNIT	
Analog Switch	-									
Analog signal range	V_{COM}, V_{NO}, V_{NC}					0		V+	٧	
Peak ON	r .	$0 \le (V_{NO} \text{ or } V_{NC}) \le V+,$	Switch ON,	25°C	2.7 V		0.2	0.3	Ω	
resistance	r _{peak}	$I_{COM} = -100 \text{ mA},$	See Figure 10	Full	2.7 V			0.35	32	
ON-state	r _{on}	V_{NO} or $V_{NC} = 2 V$,	Switch ON,	25°C	2.7 V		0.26	0.3	Ω	
resistance	ion	$I_{COM} = -100 \text{ mA},$	See Figure 10	Full	2.7 V			0.34	32	
ON-state	Δ	V_{NO} or $V_{NC} = 2 \text{ V}, 0.8 \text{ V},$	Switch ON,	25°C	0.71/		0.01	0.05	0	
resistance match between channels	Δr _{on}	$I_{COM} = -100 \text{ mA},$	See Figure 10	Full	2.7 V			0.05	Ω	
ON-state		$0 \le (V_{NO} \text{ or } V_{NC}) \le V+,$ $I_{COM} = -100 \text{ mA},$	Switch ON, See Figure 10	25°C			0.13		Ω	
resistance flatness	r _{on(flat)}	V_{NO} or $V_{NC} = 2 \text{ V}, 0.8 \text{ V},$	Switch ON,	25°C	2.7 V		0.01	0.04	Ω	
		$I_{COM} = -100 \text{ mA},$	See Figure 10	Fuli				0.05	Ω	
NC, NO	I _{NC(OFF)} ,	V_{NC} or $V_{NO} = 1 \text{ V}$, $V_{COM} = 3 \text{ V}$,	Switch OFF.	25° C		-10		10		
OFF leakage current	I _{NO(OFF)}	or V_{NC} or $V_{NO} = 3 \text{ V}, V_{COM} = 1 \text{ V},$	See Figure 11	Full	3.6 V	-50		50	nA	
NC, NO	I _{NC(ON)} ,	V_{NC} or $V_{NO} = 1 V$, $V_{COM} = Open$,	Switch ON.	25°C		-10		10		
ON leakage current	I _{NO(ON)}	or V_{NC} or $V_{NO} = 3 \text{ V}$, $V_{COM} = \text{Open}$,	See Figure 12	Full	3.6 V	-100		100	nA	
COM		V_{NC} or V_{NO} = Open, V_{COM} = 1 V,	Switch ON.	25°C		-10		10		
ON leakage current	I _{COM(ON)}	or V_{NC} or V_{NO} = Open, V_{COM} = 3 V,	See Figure 12	Full	3.6 V	-100		100	nA	
Digital Control Inpu	its (IN1, IN2) ⁽²⁾)\								
Input logic high	V _{IH}			Full		1.4			V	
Input logic low	V _{IL}			Full				0.5	V	
Input leakage	las la	V ₁ = 3.6 V or 0		25°C	3.6 V	-40	5	40	nA	
current	I _{IH} , I _{IL}	V) = 3.0 V 01 0		Full	3.0 V	-50		50	IIA	

⁽¹⁾ The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

Submit Documentation Feedback

Copyright © 2007–2008, Texas Instruments Incorporated

⁽²⁾ All unused digital inputs of the device must be held at V+ or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

$\begin{array}{c} \text{TS3A24159} \\ \text{0.3-}\Omega \text{ DUAL SPDT ANALOG SWITCH} \\ \text{DUAL-CHANNEL 2:1 MULTIPLEXER/DEMULTIPLEXER} \end{array}$

SCDS238C-MARCH 2007-REVISED FEBRUARY 2008

ELECTRICAL CHARACTERISTICS FOR 3-V SUPPLY (continued)

V+ = 2.7 V to 3.6 V, $T_A = -40^{\circ}\text{C}$ to 85°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITION	ons	T _A	V+	MIN	TYP	MAX	UNIT
Dynamic					'			'	
		V V	0 25 -5	25°C	3 V		20	35	
Turn-on time	t _{ON}	$V_{COM} = V+,$ $R_L = 50 \Omega,$	C _L = 35 pF, See Figure 14	Full	2.7 V to 3.6 V			40	ns
		V - VI	$C_L = 35 \text{ pF},$	25°C	3 V		12	25	
Turn-off time	t _{OFF}	$V_{COM} = V+,$ $R_L = 50 \Omega,$	See Figure 14	Full	2.7 V to 3.6 V			30	ns
Break-before-		\\\\ -\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	$C_1 = 35 pF$,	25°C 3 V		1	10	25	
make time	t _{BBM}	$\begin{aligned} &V_{NC} = V_{NO} = V+, \\ &R_L = 50 \ \Omega, \end{aligned}$	See Figure 15		2.7 V to 3.6 V	0.5		30	ns
Charge injection	$Q_{\mathbb{C}}$	$V_{GEN} = 0,$ $R_{GEN} = 0,$	R _{GEN} = 0, See Figure 19				9		рC
NC, NO OFF capacitance	$C_{NC(OFF)}$, $C_{NO(OFF)}$	V_{NC} or $V_{NO} = V+$ or GND, Switch OFF,	See Figure 13	25°C	3 V		90		pF
NC, NO ON capacitance	C _{NC(ON)} , C _{NO(ON)}	V_{NC} or $V_{NO} = V+$ or GND, Switch ON,	See Figure 13	25°C	3 V		224		pF
COM ON capacitance	C _{COM(ON)}	V _{COM} = V+ or GND, Switch ON,	See Figure 13	25°C	3 V		250		pF
Digital input capacitance	C _I	V _I = V+ or GND,	See Figure 13	25°C	3 V		2		pF
Bandwidth	BW	$R_L = 50 \Omega$, Switch ON,	See Figure 16	25°C	3 V		23		MHz
OFF isolation	O _{ISO}	$R_L = 50 \Omega$, f = 1 MHz,	See Figure 17	25°C	3 V		-72		dB
Crosstalk	X _{TALK}	$R_L = 50 \Omega$, $f = 1 MHz$,	See Figure 18	25°C	3 V		-96		dB
Total harmonic distortion	THD	$R_L = 600 \Omega,$ $C_L = 50 \text{ pF},$	f = 20 Hz to 20 kHz, See Figure 20	25°C	3 V		0.00		%
Supply									
Positive supply	l+	V _I = V+ or GND		25°C	3.6 V		15	100	nA
current	17	VI - VT OI GIND		Full			1		μΑ

Copyright © 2007–2008, Texas Instruments Incorporated

Submit Documentation Feedback

SCDS238C-MARCH 2007-REVISED FEBRUARY 2008

ELECTRICAL CHARACTERISTICS FOR 2.5-V SUPPLY⁽¹⁾

V+ = 2.3 V to 2.7 V, $T_A = -40^{\circ}C$ to 85°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS	3	T _A	V+	MIN	TYP	MAX	UNIT	
Analog Switch										
Analog signal range	V_{COM}, V_{NO}, V_{NC}					0		V+	V	
Peak ON resistance	r _{peak}	$0 \le (V_{NO} \text{ or } V_{NC}) \le V+,$ $I_{COM} = -8 \text{ mA},$	Switch ON, See Figure 10	25°C Full	2.3 V			0.35	Ω	
ON-state		V_{NO} or $V_{NC} = 1.8 \text{ V}$,	Switch ON,	25°C				0.10		
resistance	r _{on}	$I_{COM} = -8 \text{ mA},$	See Figure 10	Full	2.3 V			0.4	Ω	
ON-state		V_{NO} or $V_{NC} = 1.8 \text{ V}, 0.8 \text{ V},$	Switch ON.	25°C			0.01	0.05		
resistance match between channels	Δr _{on}	$I_{COM} = -8 \text{ mA},$	See Figure 10	Full	2.3 V		0.05	0.05	Ω	
ON-state		$0 \le (V_{NO} \text{ or } V_{NC}) \le V+,$ $I_{COM} = -8 \text{ mA},$	Switch ON, See Figure 10	25°C			0.05	5		
resistance flatness	r _{on(flat)}	V _{NO} or V _{NC} = 0.8 V, 1.8 V,	Switch ON,	25°C	2.3 V		0.03	0.08	Ω	
		$I_{COM} = -8 \text{ mA},$	See Figure 10	Full				0.1		
NC, NO	I _{NC(OFF)} ,	V_{NC} or $V_{NO} = 0.5 \text{ V}$, $V_{COM} = 2.2 \text{ V}$,	Switch OFF,	25° C	0.71/	-10		10		
OFF leakage current	I _{NO(OFF)}	V_{NC} or $V_{NO} = 2.2 \text{ V}, V_{COM} = 0.5 \text{ V},$	See Figure 11	Full	2.7 V	-50		50	nA	
NC, NO	I _{NC(ON)} ,	V_{NC} or $V_{NO} = 0.5 \text{ V}$, $V_{COM} = \text{Open}$,	Switch ON,	25°C	0.71/	-10		10	Α.	
ON leakage current	I _{NO(ON)}	or V_{NC} or $V_{NO} = 2.2 \text{ V}$, $V_{COM} = \text{Open}$,	See Figure 12	Full	2.7 V	-100		100	nA	
COM		V_{NC} or V_{NO} = Open, V_{COM} = 0.5 V,	Switch ON.	25°C		-10		10		
ON leakage current	I _{COM(ON)}	or V_{NC} or V_{NO} = Open, V_{COM} = 2.2 V,	See Figure 12	Full	2.7 V	-100		100	nA	
Digital Control Inpu	its (IN1, IN2) ⁽²⁾									
Input logic high	V _{IH}			Full		1.25			V	
Input logic low	V _{IL}			Full				0.5	V	
Input leakage	lus lu	V _I = 2.7 V or 0		25°C	2.7 V	-40	5	40	nA	
current	I _{IH} , I _{IL}	V = 2.7 V 01 0		Full	2.1 V	-50		50	шА	

⁽¹⁾ The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.

Submit Documentation Feedback

Copyright © 2007–2008, Texas Instruments Incorporated

⁽²⁾ All unused digital inputs of the device must be held at V+ or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

$\begin{array}{c} \text{TS3A24159} \\ \text{0.3-}\Omega \text{ DUAL SPDT ANALOG SWITCH} \\ \text{DUAL-CHANNEL 2:1 MULTIPLEXER/DEMULTIPLEXER} \end{array}$

SCDS238C-MARCH 2007-REVISED FEBRUARY 2008

ELECTRICAL CHARACTERISTICS FOR 2.5-V SUPPLY (continued)

V+ = 2.3 V to 2.7 V, $T_A = -40^{\circ}C$ to $85^{\circ}C$ (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITI	ONS	T _A	V+	MIN	TYP	MAX	UNIT
Dynamic	1								
		V V	0 25 -5	25°C	2.5 V		23	45	
Turn-on time	t _{ON}	$V_{COM} = V+,$ $R_L = 50 \Omega,$	$C_L = 35 \text{ pF},$ See Figure 14	Full	2.3 V to 2.7 V			50	ns
		V - VI	$C_1 = 35 \text{ pF},$	25°C	2.5 V		17	27	
Turn-off time	t _{OFF}	$V_{COM} = V+,$ $R_L = 50 \Omega,$	See Figure 14	Full	2.3 V to 2.7 V			30	ns
Break-before-		V V V	$C_1 = 35 pF$,	25°C	2.5 V	2	14	30	
make time	t _{BBM}	$\begin{aligned} &V_{NC} = V_{NO} = V+, \\ &R_L = 50 \ \Omega, \end{aligned}$	See Figure 15		2.3 V to 2.7 V	1		35	ns
Charge injection	Q _C	V _{GEN} = 0, R _{GEN} = 0,	C _L = 1 nF, See Figure 19	25°C	2.5 V		8		рС
NC, NO OFF capacitance	$C_{NC(OFF)}$, $C_{NO(OFF)}$	V_{NC} or $V_{NO} = V+$ or GND, Switch OFF,	See Figure 13	25°C	2.5 V		90		pF
NC, NO ON capacitance	C _{NC(ON)} , C _{NO(ON)}	V_{NC} or $V_{NO} = V+$ or GND, Switch ON,	See Figure 13	25°C	2.5 V		250		pF
COM ON capacitance	C _{COM(ON)}	V _{COM} = V+ or GND, Switch ON,	See Figure 13	25°C	2.5 V		250		pF
Digital input capacitance	Cı	V _I = V+ or GND,	See Figure 13	25°C	2.5 V		2		pF
Bandwidth	BW	$R_L = 50 \Omega$, Switch ON,	See Figure 16	25°C	2.5 V		23		MHz
OFF isolation	O _{ISO}	$R_L = 50 \Omega$, $f = 1 MHz$,	See Figure 17	25°C	2.5 V		-72		dB
Crosstalk	X _{TALK}	$R_L = 50 \Omega$, $f = 1 MHz$,	See Figure 18	25°C	2.5 V		-96		dB
Total harmonic distortion	THD	$R_L = 600 \Omega,$ $C_L = 50 \text{ pF},$	f = 20 Hz to 20 kHz, See Figure 20	25°C	2.5 V		0.00		%
Supply	1				1			L	
Positive supply	1.	V VI or CND		25°C	271/		10	100	
current	l+	$V_I = V + \text{ or GND}$		Full	Full 2.7 V		700		nA

SCDS238C-MARCH 2007-REVISED FEBRUARY 2008

ELECTRICAL CHARACTERISTICS FOR 1.8-V SUPPLY⁽¹⁾

V+ = 1.65 V to 1.95 V, $T_A = -40^{\circ}\text{C}$ to 85°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS	3	T _A	V+	MIN	TYP	MAX	UNIT
Analog Switch									
Analog signal range	V_{COM}, V_{NO}, V_{NC}					0		V+	V
Peak ON	r _{peak}	$0 \le (V_{NO} \text{ or } V_{NC}) \le V+,$	Switch ON,	25°C	1.65 V		0.4	0.9	Ω
resistance	pour	$I_{COM} = -2 \text{ mA},$	See Figure 10	Full				0.8	
ON-state resistance	r _{on}	V_{NO} or $V_{NC} = 1.5 \text{ V}$, $I_{COM} = -2 \text{ mA}$,	Switch ON, See Figure 10	25°C Full	1.65 V		0.3	0.45	Ω
		1COM = 2 1171,	Occ rigure to					0.5	
ON-state resistance match between channels	Δr _{on}	V_{NO} or V_{NC} = 0.6 V, 1.5 V, Switch ON, See Figure 10 Full 1.65 V			0.02	0.04	Ω		
ON-state		$0 \le (V_{NO} \text{ or } V_{NC}) \le V+,$ $I_{COM} = -2 \text{ mA},$	Switch ON, See Figure 10	25°C			0.13		5 Ω
resistance flatness	r _{on(flat)}	V _{NO} or V _{NC} = 0.6 V, 1.5 V,	Switch ON,	25°C	1.65 V		0.08	0.15	
		$I_{COM} = -8 \text{ mA},$	See Figure 10	Full				0.2	
NC, NO	I _{NC(OFF)} ,	V_{NC} or $V_{NO} = 0.3 \text{ V}$, $V_{COM} = 1.65 \text{ V}$,	Switch OFF,	25°C	4.05	-10		10	
OFF leakage current	I _{NO(OFF)}	or V_{NC} or $V_{NO} = 1.65 \text{ V}$, $V_{COM} = 0.3 \text{ V}$,	See Figure 11	Full	1.95	-50		50	nA
NC, NO	I _{NC(ON)} ,	V_{NC} or $V_{NO} = 0.3 \text{ V}$, $V_{COM} = \text{Open}$,	Switch ON,	25°C	4.05.14	-10		10	•
ON leakage current	I _{NO(ON)}	or V_{NC} or $V_{NO} = 1.65 \text{ V}$, $V_{COM} = Open$,	See Figure 12	Full	1.95 V	-100		100	nA
СОМ	_	V_{NC} or V_{NO} = Open, V_{COM} = 0.3 V,	Switch ON.	25°C		-10		10	
ON leakage current	I _{COM(ON)}	or V_{NC} or $V_{NO} = Open$, $V_{COM} = 1.65 V$,	See Figure 12	Full	1.95 V	-100		100	nA
Digital Control Inp	outs (IN1, IN2)	(2)							
Input logic high	V_{IH}			Full		1			V
Input logic low	V _{IL}			Full				0.4	V
Input leakage	կլ, կլ	V _I = 1.95 V or 0		25°C	1.95 V	-40	5	40	nA
current	'IH, 'IL	V = 1.55 V 01 0		Full	1.95 V	-50		50	ш

⁽¹⁾ The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

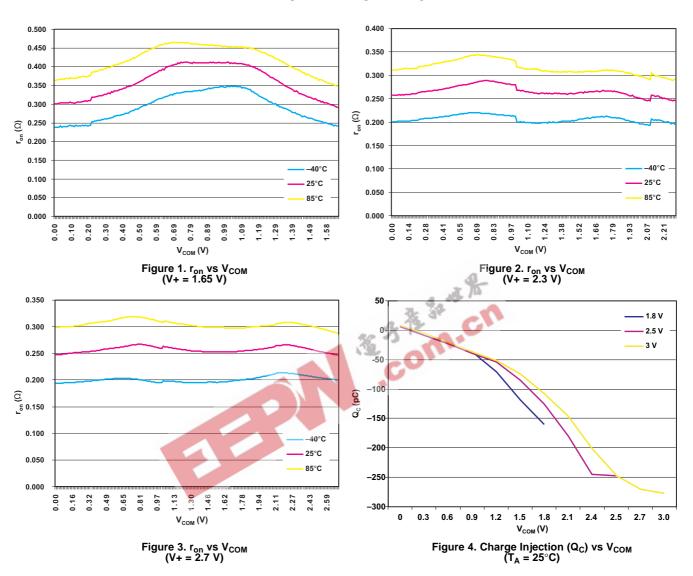
Submit Documentation Feedback

Copyright © 2007–2008, Texas Instruments Incorporated

⁽²⁾ All unused digital inputs of the device must be held at V+ or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

$\begin{array}{c} \text{TS3A24159} \\ \text{0.3-}\Omega \text{ DUAL SPDT ANALOG SWITCH} \\ \text{DUAL-CHANNEL 2:1 MULTIPLEXER/DEMULTIPLEXER} \end{array}$

SCDS238C-MARCH 2007-REVISED FEBRUARY 2008


ELECTRICAL CHARACTERISTICS FOR 1.8-V SUPPLY (continued)

V+ = 1.65 V to 1.95 V, $T_A = -40^{\circ}\text{C}$ to 85°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITION	S	T _A	V+	MIN	TYP	MAX	UNIT
Dynamic									
				25°C	1.8 V		53	75	
Turn-on time	t _{ON}	$V_{COM} = V_+,$ $R_L = 50 \Omega,$	$C_L = 35 \text{ pF},$ See Figure 14	Full	1.65 V to 1.95 V			30	ns
				25°C	1.8 V		24	35	
Turn-off time	t _{OFF}	$V_{COM} = V+,$ $R_L = 50 \Omega,$	$C_L = 35 \text{ pF},$ See Figure 14	Full	1.65 V to 1.95 V			40	ns
				25°C	1.8 V	2	30	40	
Break-before- make time	t _{BBM}	$\begin{aligned} V_{NC} &= V_{NO} = V+, \\ R_L &= 50~\Omega, \end{aligned}$	$C_L = 35 \text{ pF},$ See Figure 15	Full	1.65 V to 1.95 V	1		50	ns
Charge injection	Q _C	V _{GEN} = 0, R _{GEN} = 0,	C _L = 1 nF, See Figure 19	25°C	1.8 V		5		рС
NC, NO OFF capacitance	$C_{NC(OFF)}, \\ C_{NO(OFF)}$	V _{NC} or V _{NO} = V+ or GND, Switch OFF,	See Figure 13	25° C	1.8 V		90		pF
NC, NO ON capacitance	$C_{NC(ON)}, \ C_{NO(ON)}$	V_{NC} or $V_{NO} = V+$ or GND, Switch ON,	See Figure 13	25°C	1.8 V		250		pF
COM ON capacitance	C _{COM(ON)}	V _{COM} = V+ or GND, Switch ON,	See Figure 13	2 5°C	1.8 V		250		pF
Digital input capacitance	C _I	V _I = V+ or GND,	See Figure 13	25°C	1.8 V		2		pF
Bandwidth	BW	$R_L = 50 \Omega$, Switch ON,	See Figure 16	25°C	1.8 V		23		MHz
OFF isolation	O _{ISO}	$R_L = 50 \Omega$, $f = 1 MHz$,	See Figure 17	25°C	1.8 V		-73		dB
Crosstalk	X _{TALK}	$R_L = 50 \Omega$, $f = 1 MHz$,	See Figure 18	25°C	1.8 V		-97		dB
Total harmonic distortion	THD	$R_L = 600 \Omega,$ $C_L = 50 \text{ pF},$	f = 20 Hz to 20 kHz, See Figure 20	25°C	1.8 V		0.00		%
Supply									
Positive supply current	l+	V _I = V+ or GND		25°C Full	1.95 V		100	50 700	nA

TYPICAL PERFORMANCE

SCDS238C-MARCH 2007-REVISED FEBRUARY 2008

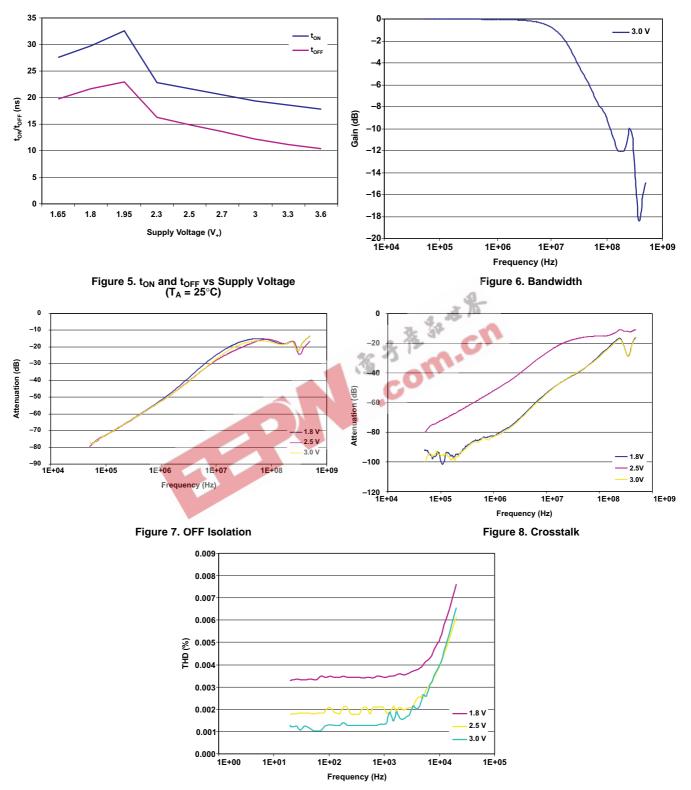


Figure 9. Total Harmonic Distortion vs Frequency

PARAMETER MEASUREMENT INFORMATION

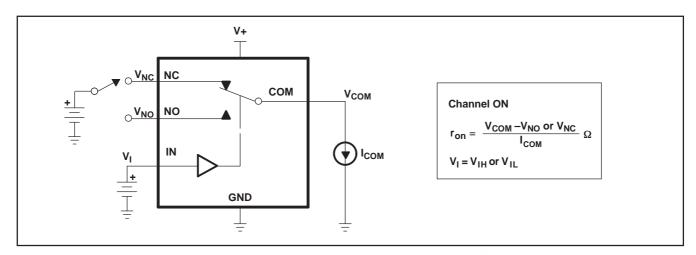


Figure 10. ON-State Resistance

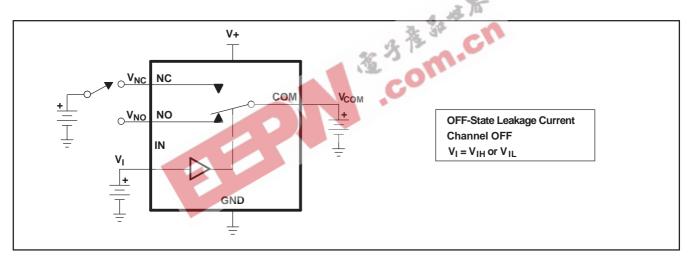


Figure 11. OFF-State Leakage Current (I_{NC(OFF)}, I_{NO(OFF)}, I_{NO(OFF)}, I_{NO(OFF)}, I_{COM(OFF)}, I_{COM(PWROFF)})

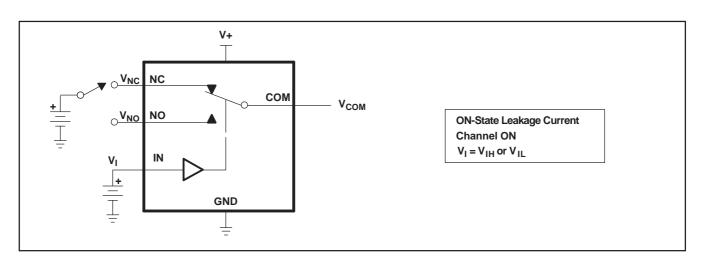


Figure 12. ON-State Leakage Current ($I_{COM(ON)}$, $I_{NC(ON)}$, $I_{NO(ON)}$)

PARAMETER MEASUREMENT INFORMATION (continued)

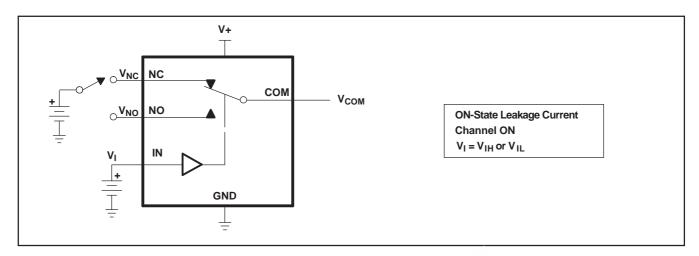
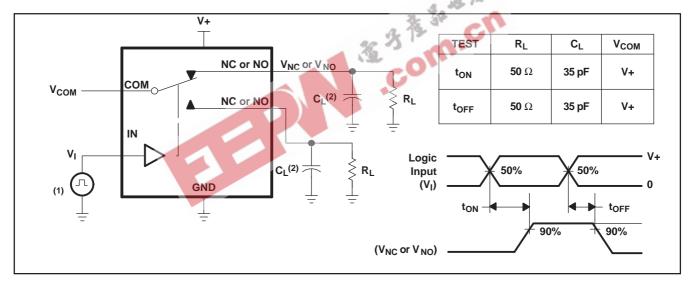
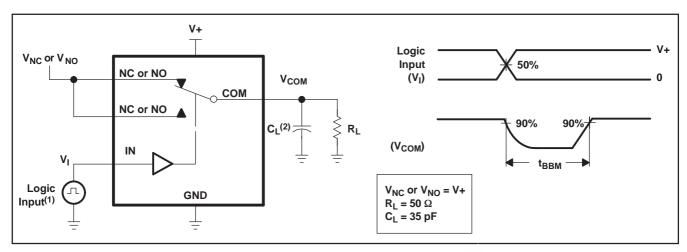



Figure 13. Capacitance (C_I, $C_{NC(OFF)}$, $C_{NO(OFF)}$, $C_{NC(ON)}$, $C_{NO(ON)}$)



- (1) All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_r < 5 \text{ ns}$, $t_f < 5 \text{ ns}$.
- (2) C_L includes probe and jig capacitance.

Figure 14. Turn-On (t_{ON}) and Turn-Off Time (t_{OFF})

PARAMETER MEASUREMENT INFORMATION (continued)

- (1) All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_r < 5$ ns, $t_r < 5$ ns.
- (2) C_L includes probe and jig capacitance.

citance.

Figure 15. Break-Before-Make Time (t_{BBM})

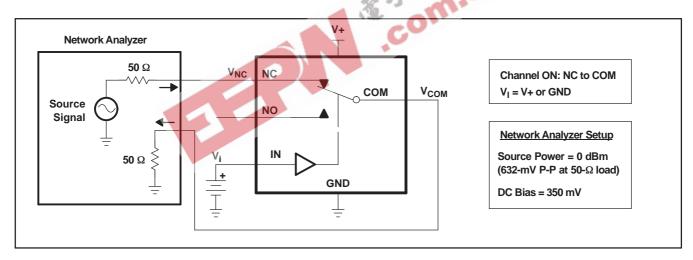


Figure 16. Bandwidth (BW)

Submit Documentation Feedback

PARAMETER MEASUREMENT INFORMATION (continued)

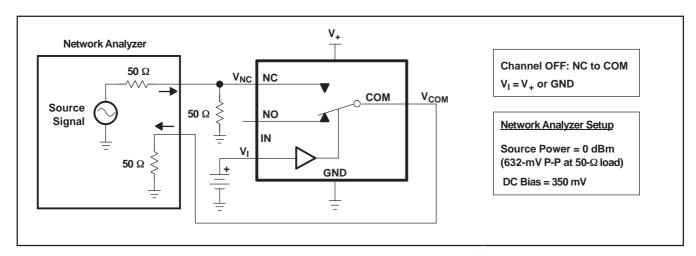


Figure 17. OFF Isolation (O_{ISO})

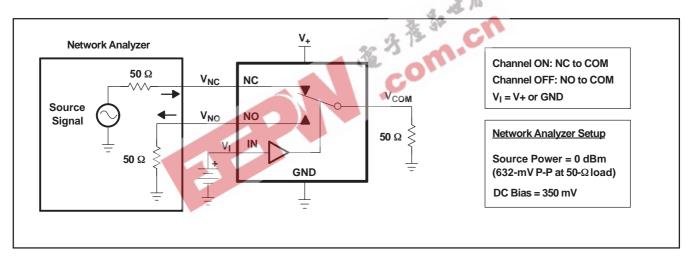
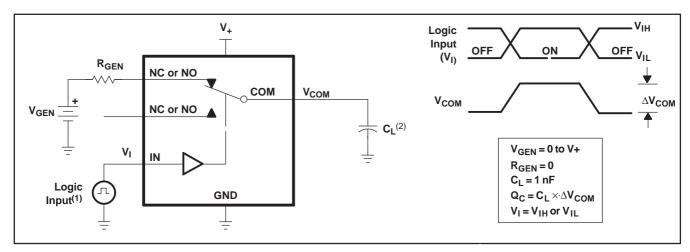
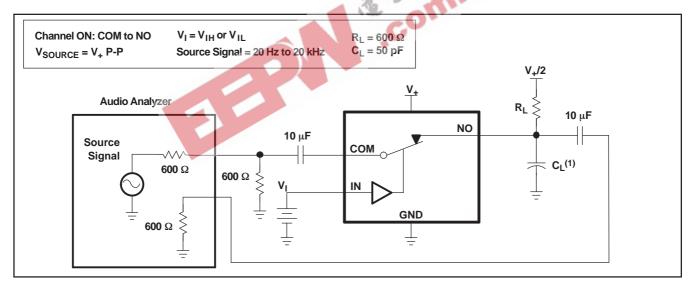



Figure 18. Crosstalk (X_{TALK})



PARAMETER MEASUREMENT INFORMATION (continued)

- A. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_r < 5$ ns, $t_f < 5$ ns.
- B. C_L includes probe and jig capacitance.

Figure 19. Charge Injection (Q_C)

A. C_L includes probe and jig capacitance.

Figure 20. Total Harmonic Distortion (THD)

PACKAGE OPTION ADDENDUM

22-Jul-2008

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
TS3A24159DGSR	ACTIVE	MSOP	DGS	10	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TS3A24159DGSRG4	ACTIVE	MSOP	DGS	10	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TS3A24159DRCR	ACTIVE	SON	DRC	10	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
TS3A24159DRCRG4	ACTIVE	SON	DRC	10	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
TS3A24159YZPR	ACTIVE	DSBGA	YZP	10	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

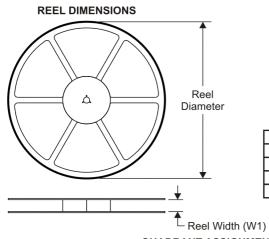
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

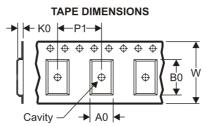
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

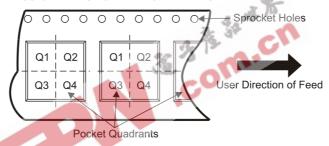
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.



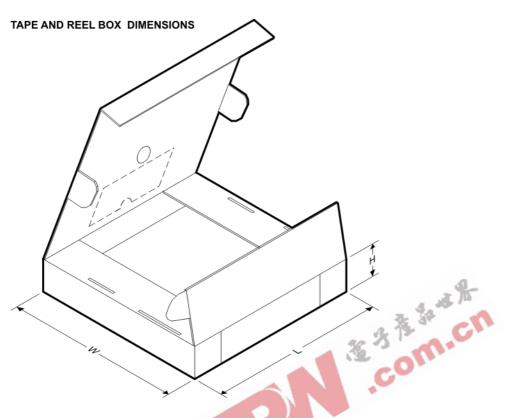
PACKAGE MATERIALS INFORMATION

21-Aug-2008


TAPE AND REEL INFORMATION

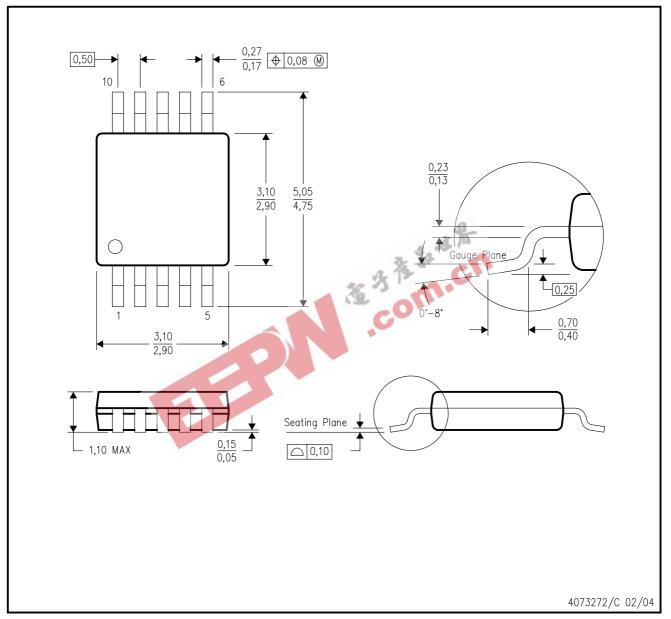
A0	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPES


*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadra
TS3A24159DGSR	MSOP	DGS	10	2500	330.0	13.0	5.3	3.4	1.4	8.0	12.0	Q1
TS3A24159DRCR	SON	DRC	10	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
TS3A24159YZPR	DSBGA	YZP	10	3000	180.0	8.4	1.5	2.03	0.7	4.0	8.0	Q2

21-Aug-2008



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TS3A24159DGSR	MSOP	DGS	10	2500	358.0	335.0	35.0
TS3A24159DRCR	SON	DRC	10	3000	346.0	346.0	29.0
TS3A24159YZPR	DSBGA	YZP	10	3000	220.0	220.0	34.0

DGS (S-PDSO-G10)

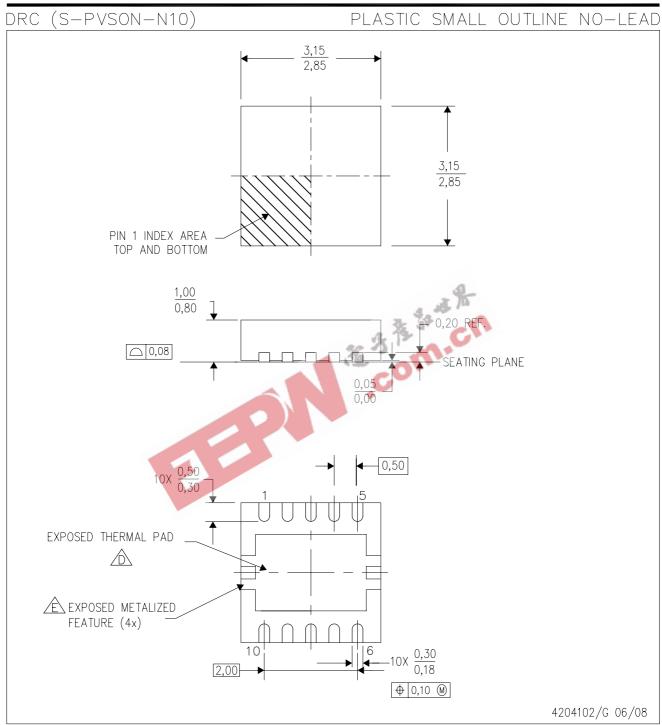
PLASTIC SMALL-OUTLINE PACKAGE


NOTES: All linear dimensions are in millimeters.

- This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion.
 D. Falls within JEDEC MO-187 variation BA.

YZP (R-XBGA-N10)

(CUSTOM) DIE-SIZE BALL GRID ARRAY


NOTES:

- All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
- B. This drawing is subject to change without notice.
 C. NanoFree™ package configuration.
 D. This package is a lead—free solder ball design.

NanoFree is a trademark of Texas Instruments.

MECHANICAL DATA

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.

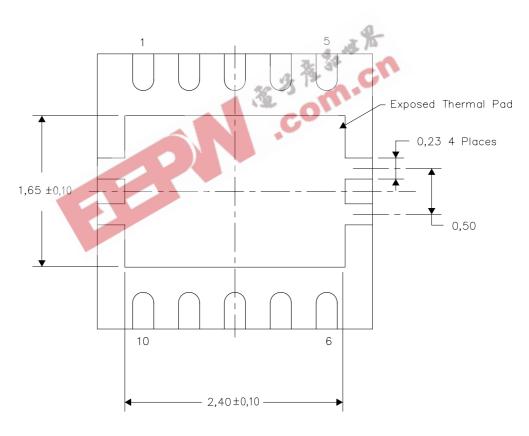
C. Small Outline No-Lead (SON) package configuration.

The package thermal pad must be soldered to the board for thermal and mechanical performance.

See the Product Data Sheet for details regarding the exposed thermal pad dimensions.

Æ. Metalized features are supplier options and may not be on the package.

THERMAL PAD MECHANICAL DATA

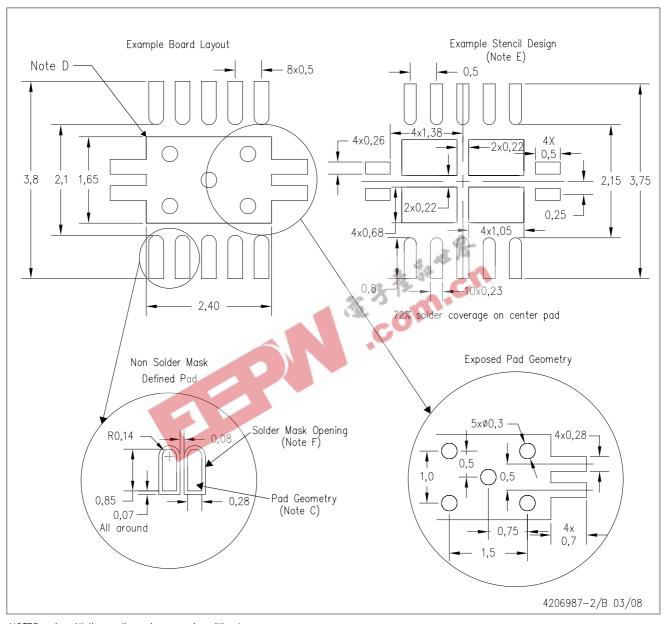

DRC (S-PVSON-N10)

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No—Lead (QFN) package and its advantages, refer to Application Report, Quad Flatpack No—Lead Logic Packages, Texas Instruments Literature No. SCBA017. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.



Bottom View

NOTE: All linear dimensions are in millimeters

Exposed Thermal Pad Dimensions

DRC (S-PVSON-N10)

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat—Pack Packages, Texas Instruments Literature No. SCBA017, SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Amplifiers amplifier.ti.com Data Converters dataconverter.ti.com DSP dsp.ti.com Clocks and Timers www.ti.com/clocks Interface interface.ti.com Logic logic.ti.com Power Mgmt power.ti.com Microcontrollers microcontroller.ti.com www.ti-rfid.com RF/IF and ZigBee® Solutions www.ti.com/lprf

Applications Audio www.ti.com/audio Automotive www.ti.com/automotive Broadband www.ti.com/broadband Digital Control www.ti.com/digitalcontrol Medical www.ti.com/medical Military www.ti.com/military Optical Networking www.ti.com/opticalnetwork Security www.ti.com/security Telephony www.ti.com/telephony Video & Imaging www.ti.com/video Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated