

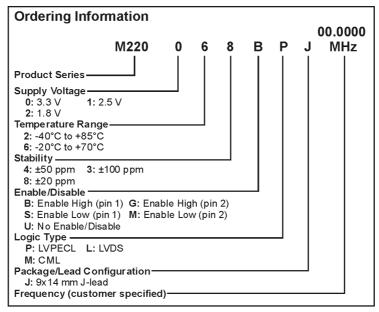
M220x Series

9x14 mm, 3.3/2.5/1.8 Volt, LVPECL/LVDS/CML, Clock Oscillator

Product Features

- Featuring QiK Chip™ Technology
- From order to ship in 2 weeks
- Superior Jitter Performance (less than 0.25 ps RMS, 12 kHz - 20 MHz)
- SAW replacement better performance
- Frequencies from 150 MHz to 1.4 GHz

Product Description


The 220x series of oscillators are 9x14 J-Lead oscillators designed with the QiK Chip™ technology. The QiK Chip™ technology was specifically designed for crystal based oscillators to provide low jitter performance (as low as 0.25 ps RMS) and a wide range of frequency support (150.00 MHz to 1.4 GHz) and provides a breakthrough in lean manufacturing enabling product to be provided in less than 2 weeks. The M220x provides design engineers with the stability needed in their advanced applications and supports the need for parts to be supplied guickly so that the rest of their circuit design can be solidified.

Product Applications

- Telecommunications such as SONET / SDH / DWDM / FEC / SERDES / OC-3 thru OC-192
- 1-2-4-10 Gigabit Fibre Channel
- Wireless Base Stations / WLAN / Gigabit Ethernet
- Avionic Flight Controls

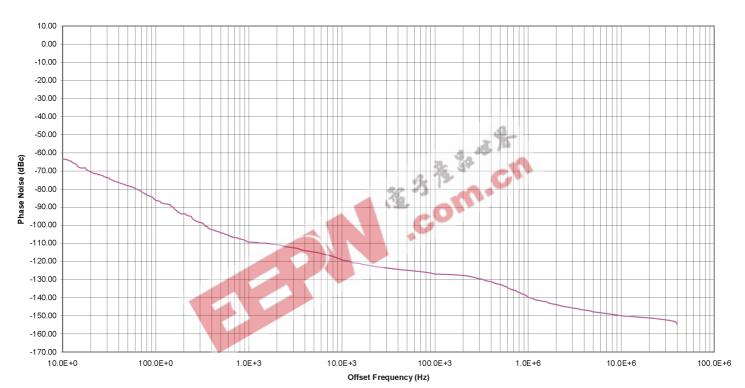
- Military Communications
- Clock and Data Recovery
- SD/HD Video
- FPGA/ASIC Clock Generation
- Test and Measurement Equipment

Product Ordering Information

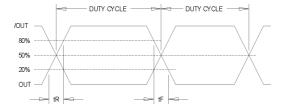
M2200Sxxx, M2201Sxxx, M2202Sxxx - Contact factory for datasheets.

Performance Characteristics

	PARAMETER	Symbol	Min.	Тур.	Max.	Units	Condition/Notes				
ı	Frequency Range	F	150	Typ.	1400	MHz	See Note 1				
	Operating Temperature	TA	(See ordering	na inforr		Gee Note 1					
	Storage Temperature	Ts	-55	ig ii iioii	+125						
	Frequency Stability	ΔF/F	(See ordering	ag inforr		See Note 2					
	Aging	ΔΓ/Γ	(See Orderii	ig irilon	nation)	See Note 2					
ı	1st Year		-3		+3	ppm					
ı	Thereafter (per year)		-1		+1	ppm					
ı	Supply Voltage	Vcc	1.71	1.8	1.89	V	LVDS/CML				
ı			2.375	2.5	2.625	V					
ı			3.135	3.3	3.465	V					
ı	Input Current	Icc			125	mA	LVPECL/LVDS/CML				
ı	Load		50 Ohmsto	Λ/ 0) \ / d =	See Note 3 LVPECL Waveform					
L			100 Ohm di		LVDS/CML Waveform						
L	0(Doub Oo		45		55	%	LVPECL - Vdd-1.3 V				
ω	Symmetry (Duty Cycle)		45		55	3 July 114	LVDS – 1.25 V				
Specifications	Output Skew			20 15	- 25	ps	LVPECL				
g				20	12. 1	ps ps	CML LVDS				
ΙĖ	Differential Voltage	Vod	250	350	450	mV	LVDS				
l ě	Differential voltage	Vod	0.7	.095	1.20	Vpp	CML				
	Common Mode	Vcm	0.7		1,20	7					
Electrical	Output Voltage			1.2		V	LVDS				
ect	Logic "1" Level	Voh	Vcc -1.02		-	V	LVPECL				
ļΞ	Logic "0" Level	Vol			Vcc -1.63	V	LVPECL				
ı	Rise/Fall Time	Tr/Tf		0.23	0.50	ns	@ 20/80% LVPECL				
ı	Enable Function				C: Output acti	Output Option B or G					
ı					isables to hig						
ı			0.5V max o 80% Vcc m		Output Option S or M						
ı	Start up Time		00% VCC III	пт. Оцф	10	ms					
ı	Phase Jitter				10	1110					
ı	@ 622.08 MHz	φЈ		0.25		ps RMS	Integrated 12 kHz – 20 MHz				
ı	Phase Noise	4.5		0.20			@ 622.08 MHz				
ı	10 Hz			-60			dBc/Hz				
ı	100 Hz			-97			dBc/Hz				
ı	1 KHz			-107			dBc/Hz				
ı	10 KHz			-116			dBc/Hz				
ı	100 KHz			-121			dBc/Hz				
1	1 MHz			-134			dBc/Hz				
1	10 MHz			-146			dBc/Hz				
L	100 MHz			-148			dBc/Hz				
=	Mechanical Shock		STD-202, Method 213, Condition C (100 g's, 6 mS duration, ½ sinewave)								
] ţ	Vibration		Per MIL-STD-202, Method 201 & 204 (10 g's from 10-2000 Hz)								
١۽	Hermeticity	Per MIL-	Per MIL-STD-202, Method 112, (1x10 ⁻⁸ atm. cc/s of Helium)								
Environmental	Thermal Cycle			thod 10	10, Condition	B (-55°C to +12	25°C, 15 min. dwell, 10 cycles)				
[]	Solderability		-STD-002								
쁘	Max Soldering Condition	s See sold	er profile, Fig	ure 1							


Note 1: Contact factory for standard frequency availability over 945 MHz Note 2: Stability is inclusive of initial tolerance, deviation over temperature, shock, vibration, supply voltage, and aging for one year at 50°C mean ambient temperature.

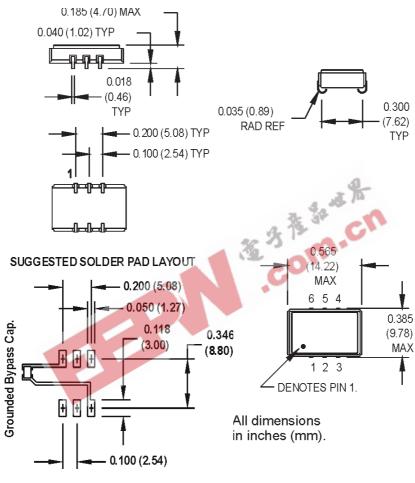
Note 3: See Load Circuit Diagram in this Datasheet. Consult factory with nonstandard output load requirements.



Phase Noise Plot

Phase Noise (dBc/Hz) 622.08MHz

Output Waveform


Output Waveform: LVDS/CML/PECL

M220x Series

9x14 mm, 3.3/2.5/1.8 Volt, LVPECL/LVDS/CML, Clock Oscillator

Product Dimension & Pinout Information

PIN 1 ENABLE

Pin1: Enable/Disable

Pin2: N/C

Pin3: Ground

Pin4: Output Q (LVPECL,LVDS,CML)

Pin5: Output Q (LVPECL,LVDS,CML)

Pin6: Vcc

PIN 2 ENABLE

Pin1: N/C

Pin2: Enable/Disable

Pin3: Ground

Pin4: Output Q (LV PECL, LV DS, CML)
Pin5: Output Q (LV PECL, LV DS, CML)

Pin6: Vcc

Static Sensitive

Handle only at Static Safe Work Stations

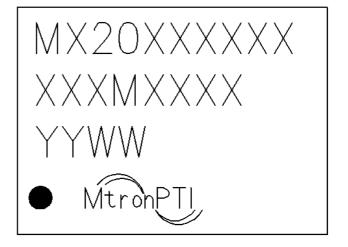
Devices

Handling Information

Although protection circuitry has been designed into the M220x oscillator, proper precautions should be taken to avoid exposure to electrostatic discharge (ESD) during handling and mounting. MtronPTI utilizes a human-body model (HBM) and a charged-device model (CDM) for ESD-susceptibility testing and protection design evaluation. ESD voltage thresholds are dependent on the circuit parameters used to define the mode. Although no industry-wide standard has been adopted for the CDM, a standard HBM (resistance = 1500 Ω , capacitance = 100 pF) is widely used and therefore can be used for comparison purposes. The HBM ESD threshold presented here was obtained using these circuit parameters.

Model	ESD Threshold, Minimum	Unit		
Human Body	1500*	V		
Charged Device	1500*	V		

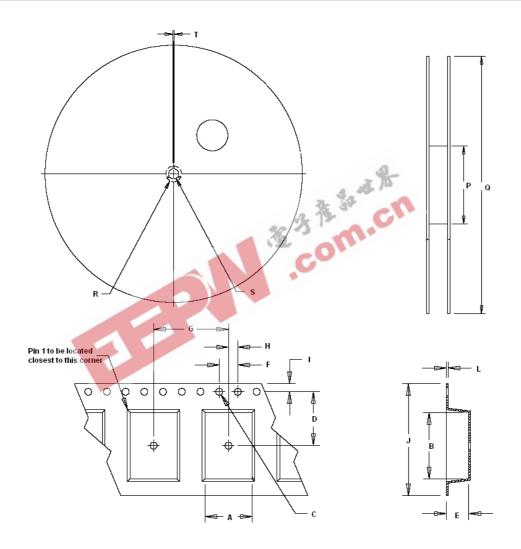
^{*} MIL-STD-833D, Method 3015, Class 1


Quality Parameters

Environmental Specifications/Qualification Testing Performed on the M220 Clock Oscillator									
Test	Test Method	Test Condition							
Electrical Characteristics	Internal Specification	Per Specification							
Frequency vs. Temperature	Internal Specification	Per Specification							
Mechanical Shock	MIL-STD-202, Method 213, C	100 g's							
Vibration	MIL-STD-202, Method 201-204	10 g's from 10-2000 Hz							
Thermal Cycle	MIL-STD-883, Method 1010, B	-55 Deg. C to +125 Deg. C, 15 minute Dwell, 10 cycles							
Aging	Internal Specification	168 Hours at 105 Degrees C							
Gross Leak	MIL-STD-202, Method 112	30 Second Immersion							
Fine Leak	MIL-STD-202, Method 112	Must meet 1x10 ⁻⁸							
Solderability	MIL-STD-883, Method 2003	8 Hour Steam Age – Must Exhibit 95% coverage							
Resistance to Solvents	MIL-STD-883, Method 2015	Three 1 minute soaks							
Terminal Pull	MIL-STD-883, Method 2004, A	2 Pounds							
Lead Bend	MIL-STD-883, Method 2004, B1	1 Bending Cycle							
Physical Dimensions	MIL-STD-883, Method 2016	Per Specification							
Internal Visual	Internal Specification	Per Internal Specification							

Part Marking Guide

Line 1: Model Number Line 2: Frequency Line 3: Date Code

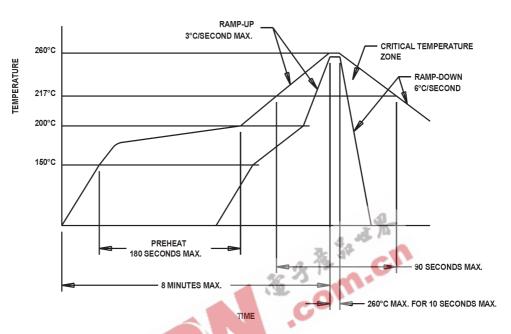

Line 4: Pin 1 Indicator / MtronPTI

Tape & Reel Specifications

(all measurements are in mm)	Α	В	С	D	E	F	G	Н	I	J	L	Р	Q	R	S	Т
M220x	10.00	14.20	1.50	11.50	4.85	4.00	16.00	2.00	1.75	24.00	0.35	100.00	330.00	20.20	13.00	2.00

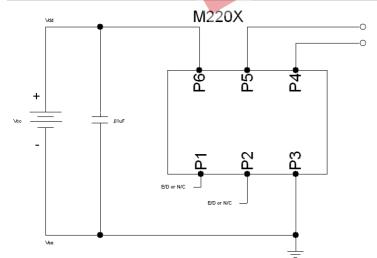
Standard Tape and Reel: 500 parts per reel

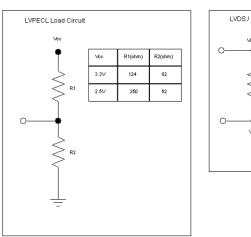
Product Revision Table

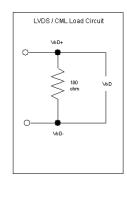

Date	Revision	PCN Number	Details of Revision
7/20/07	Α	10118	IC Revision to improve phase noise and electrical performance

M220x Series

9x14 mm, 3.3/2.5/1.8 Volt, LVPECL/LVDS/CML, Clock Oscillator


Maximum Soldering Conditions




Solder Conditions

Note: Exceeding these limits may damage the device.

Typical Test Circuit & Load Circuit Diagrams

For custom products or additional specifications contact our sales team at 800.762.8800 (toll free) or 605.665.9321

For more information on this product visit the MtronPTI website at www.mtronpti.com