

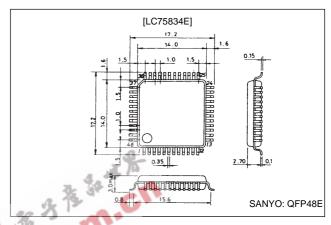
1/4 Duty General-Purpose LCD Drivers

Overview

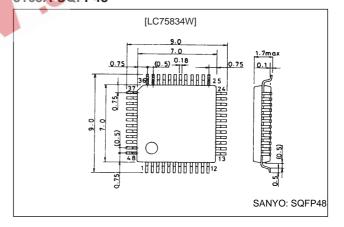
The LC75834E, LC75834W, and LC75834JE are 1/4-duty general-purpose LCD drivers that can be used for frequency display in electronic tuners under the control of a microcontroller. The LC75834E and LC75834W can drive an LCD with up to 136 segments directly, the LC75834JE can drive an LCD with up to 120 segments directly. The LC75834E and LC75834W and LC75834JE can also control up to 8 general-purpose output ports. Since the LC75834E, LC75834W, and LC75834JE use separate power supply systems for the LCD drive block and the logic block, the LCD driver block power-supply voltage can be set to any voltage in the range 2.7 to 6.0 volts, regardless of the logic block power-supply voltage.

Features

• Supports both 1/4 duty 1/2 bias and 1/4 duty 1/3 bias LCD drive under serial data control.

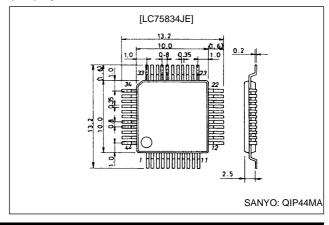

LC75834E, LC75834W: up to 136 segments LC75834JE: up to 120 segments (without the S9, S18, S27, S34 segment output pins from the LC75834E, LC75834W)

- Serial data input supports CCB* format communication with the system controller.
- Serial data control of the power-saving mode based backup function and all the segments forced off function
- Serial data control of switching between the segment output port and the general-purpose output port functions
- High generality, since display data is displayed directly without decoder intervention.
- Independent V_{LCD} for the LCD driver block (V_{LCD} can be set to any voltage in the range 2.7 to 6.0 volts, regardless of the logic block power-supply voltage.)
- The INH pin can force the display to the off state.
- · RC oscillator circuit
 - CCB is a trademark of SANYO ELECTRIC CO., LTD.
 - CCB is a SANYO's original bus format and all the bus addresses are controlled by SANYO.


Package Dimensions

unit: mm

3156-QFP48E



unit: mm 3163A-SQFP48

unit: mm

3148-QFP44MA

Specifications Absolute Maximum Ratings at $Ta=25^{\circ}C,\,V_{SS}=0~V$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{DD} max V _{DD}		-0.3 to +7.0	V
waximum supply voltage	V _{LCD} max	V _{LCD}	-0.3 to +7.0	V
	V _{IN} 1	CE, CL, DI, INH	-0.3 to +7.0	V
Input voltage	V _{IN} 2	OSC	-0.3 to V _{DD} + 0.3	V
	V _{IN} 3	V _{LCD} 1, V _{LCD} 2	-0.3 to V _{LCD} + 0.3	V
Output voltage	V _{OUT} 1	OSC	-0.3 to V _{DD} + 0.3	V
Output voltage	V _{OUT} 2	S1 to S34, COM1 to COM4, P1 to P8	-0.3 to V _{LCD} + 0.3	V
	I _{OUT} 1	S1 to S34	300	μA
Output current	I _{OUT} 2	COM1 to COM4	3	mA
	I _{OUT} 3	P1 to P8	5	mA
Allowable power dissipation	Pd max	Ta = 85°C	150	mW
Operating temperature	Topr		-40 to +85	°C
Storage temperature	Tstg		-55 to +125	°C

Note: The LC75834JE do not have the S9, S18, S27 S34 output pins.

Allowable Operating Ranges at $Ta = -40~to~+85^{\circ}C,\,V_{SS} = 0~V$

		0 1111		48	Ratings		
Parameter	Symbol	Conditions		min	typ	max	Unit
Supply voltage	V _{DD}	V _{DD}	25c \	2.7		6.0	V
Supply voltage	V _{LCD}	V_{LCD}	2 13	2.7		6.0	V
Input voltage	V _{LCD} 1	V _{LCD} 1		1	2/3 V _{LCD}	V _{LCD}	V
input voltage	V _{LCD} 2	V _{LCD} 2	4		1/3 V _{LCD}	V _{LCD}	V
Input high-level voltage	V _{IH}	CE, CL, DI, INH	6	0.8 V _{DD}		6.0	V
Input low-level voltage	V _{IL}	CE, CL, DI, TNH		0		0.2 V _{DD}	V
Recommended external resistance	R _{OSC}	OSC			43		kΩ
Recommended external capacitance	Cosc	OSC			680		pF
Guaranteed oscillation range	fosc	OSC		25	50	100	kHz
Data setup time	t _{ds}	CL, DI: Figure 2		160			ns
Data hold time	t _{dh}	CL, DI: Figure 2		160			ns
CE wait time	t _{cp}	CE, CL: Figure 2		160			ns
CE setup time	t _{cs}	CE, CL: Figure 2		160			ns
CE hold time	t _{ch}	CE, CL: Figure 2		160			ns
High-level clock pulse width	t _{øH}	CL: Figure 2		160			ns
Low-level clock pulse width	t _{øL}	CL: Figure 2		160			ns
Rise time	t _r	CE, CL, DI: Figure 2			160		ns
Fall time	t _f	CE, CL, DI: Figure 2			160		ns
INH switching time	t _c	ĪNH, CE: Figure 3		10			μs

Electrical Characteristics for the Allowable Operating Ranges

<u> </u>	0 1 1	0 177		Ratings		11.2
Parameter	Symbol	Conditions	min	typ	max	Unit
Hysteresis width	V _H	CE, CL, DI, INH		0.1 V _{DD}		V
Input high level current	I _{IH}	CE, CL, DI, INH; V _I = 6.0 V			5.0	μA
Input low level current	I _{IL}	CE, CL, DI, $\overline{\text{INH}}$; V _I = 0 V	-5.0			μA
	V _{OH} 1	S1 to S34; I _O = -20 μA	V _{LCD} - 0.9			V
Output high-level voltage	V _{OH} 2	COM1 to COM4; $I_O = -100 \mu A$	V _{LCD} - 0.9			V
	V _{OH} 3	P1 to P8; I _O = -1 mA	V _{LCD} - 0.9			V
	V _{OL} 1	S1 to S34; I _O = 20 μA			0.9	V
Output low-level voltage	V _{OL} 2	COM1 to COM4; I _O = 100 μA			0.9	V
	V _{OL} 3	P1 to P8; I _O = 1 mA			0.9	V
	V _{MID} 1	COM1 to COM4; 1/2 bias, I _O = ±100 μA	1/2 V _{LCD} – 0.9		1/2 V _{LCD} + 0.9	V
	V _{MID} 2	S1 to S34; 1/3 bias, I _O = ±20 µA	2/3 V _{LCD} – 0.9		2/3 V _{LCD} + 0.9	V
Output middle-level voltage*1	V _{MID} 3	S1 to S34; 1/3 bias, I _O = ±20 μA	1/3 V _{LCD} – 0.9		1/3 V _{LCD} + 0.9	V
	V _{MID} 4	COM1 to COM4; 1/3 bias, I _O = ±100 μA	2/3 V _{LCD} – 0.9		2/3 V _{LCD} + 0.9	V
	V _{MID} 5	COM1 to COM4; 1/3 bias, I _O = ±100 μA	1/3 V _{LCD} – 0.9		1/3 V _{LCD} + 0.9	V
Oscillator frequency	fosc	OSC; $R_{OSC} = 43 \text{ k}\Omega \text{ C}_{OSC} = 680 \text{ pF}$	40	50	60	kHz
	I _{DD} 1	V _{DD} ; power saving mode			5	μΑ
	I _{DD} 2	V_{DD} ; $V_{DD} = 6.0 \text{ V}$, output open, fosc = 50 k Hz	3.	230	460	μΑ
	I _{LCD} 1	V _{LCD} ; power saving mode	-71		5	μΑ
Current drain	I _{LCD} 2	V _{LCD} ; V _{LCD} = 6.0 V, output open 1/2 bias, fosc = 50 k Hz	18.0	100	200	μΑ
	I _{LCD} 3	V _{LCD} ; V _{LCD} = 6.0 V, output open 1/3 bias, fosc = 50 k Hz		60	120	μΑ

Note: *1 Excluding the bias voltage generation divider resistors built in the V_{LCD}1 and V_{LCD}2. (See Figure 1.)

The LC75834JE do not have the S9, S18, S27, S34 output pins.

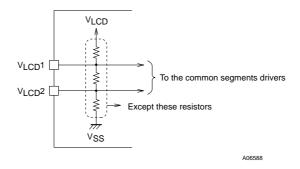
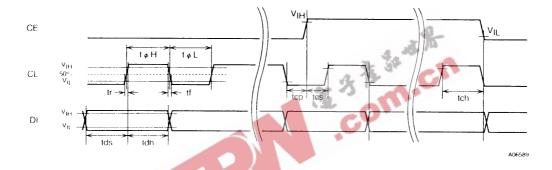



Figure 1

1. When CL is stopped at the low level

2. When CL is stopped at the high level

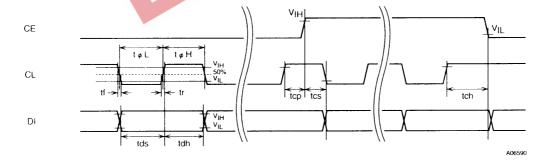
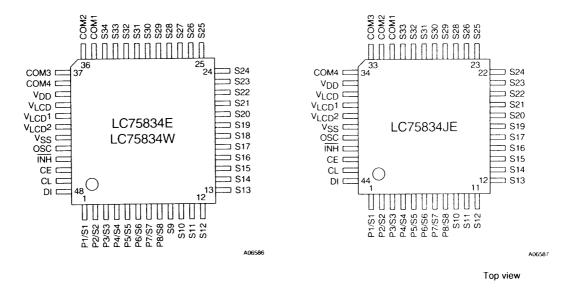
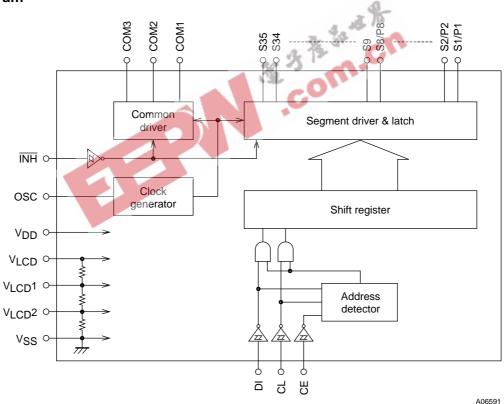
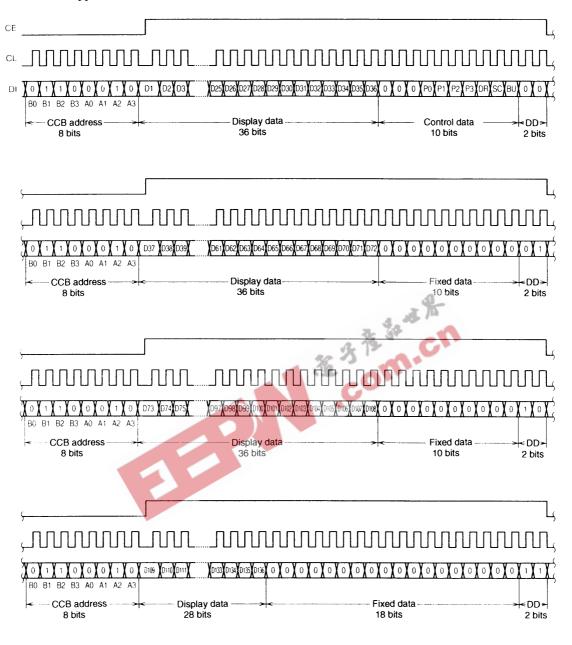




Figure 2

Pin Assignments

Block Diagram

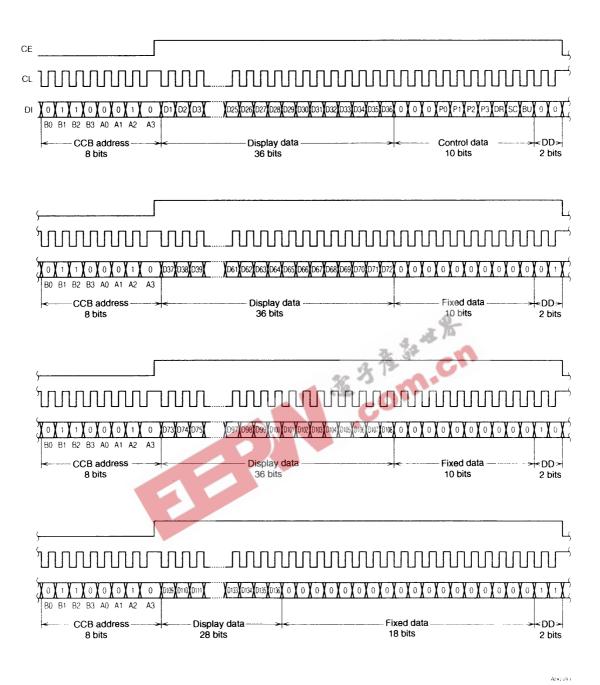
Note: The LC75834JE do not have the S9, S18, S27, S34 output pins.


Pin Functions

	Pin No. LC75834E, 75834W LC75834JE						Handling
Pin			Function			I/O	when unused
S1/P1 to S8/P8 S9 to S34	1 to 8 9 to 34	1 to 8 9 to 30	Segment outputs for displaying the cinput. The pins S1/P1 to S8/P8 can be when so set up by the control data.	_	0	Open	
COM1 COM2 COM3 COM4	35 36 37 38	31 32 33 34	Common driver outputs. The frame frequency f _O is given by:	_	0	Open	
OSC	44	40	Oscillator connection An oscillator circuit is formed by cont	_	I/O	V _{DD}	
CE	46	42	Serial data transfer inputs. These	CE: Chip enable	Н		
CL	47	43	pins are connected to the control CL: Synchronization clock			ı	GND
DI	48	44	microprocessor.	microprocessor. DI: Transfer data			
ĪNH	45	41	Display off control input INH = low (V _{SS}): Off S1/P1 to S8/P8 = (These pins are If function and fixer S9 to S34 = Low COM1 to COM4 INH = high (V _{DD}): On Note that serial data transfers can be display is forced off by this pin.	L	I	GND	
V _{LCD} 1	41	37	Used to apply the LCD drive 2/3-bias connected to V _{LCD} 2 when 1/2-bias	_	I	Open	
V _{LCD} 2	42	38	Used to apply the LCD drive 1/3-bias connected to V _{LCD} 1 when 1/2-bias	_	I	Open	
V_{DD}	39	35	Logic block power supply. Provide a	_	_	_	
V _{LCD}	40	36	LCD driver block power supply. Prov	ide a voltage in the range 2.7 to 6.0 V.		_	_
V_{SS}	43	39	Ground pin. Connect to ground.		-	_	_

Note: The LC75834JE do not have the S9, S18, S27, S34 output pins.

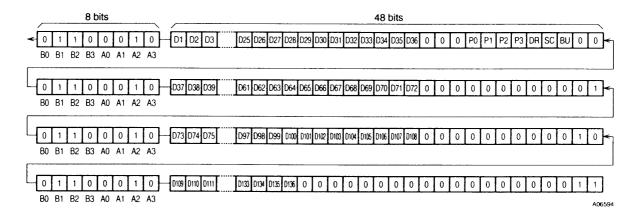
Serial Data Transfer Format


1. When CL is stopped at the low level

Note: DD ... Direction data

A06592

2. When CL is stopped at the high level


Note: DD ... Direction data

 CCB address46 	H
-----------------------------------	---

- D1 to D136.....Display data (At the LC75834JE, the display data D33 to D36, D69 to D72, D105 to D108, D133 to D136 must be set to 0.
- P0 to P3Segment output port/general-purpose output port switching control data
- SC.....Segments on/off control data
- BUNormal mode/power-saving mode control data

Serial Data Transfer Examples

• At the LC75834E and LC75834W when 109 or more segments are used, at the LC75834JE when 97 or more segments are used, 192 bits of serial data must be sent.

Note: At the LC75834JE, the display data D33 to D36, D69 to D72, D105 to D108, D133 to D136 must be set to 0.

• At the LC75834E and LC75834W when used with less than 109 segments, at the LC75834JE when used with less than 97 segments, transfer either 48 bits, 96 bits or 144 bits of serial data depending on the number of segments used. However, the serial data shown in the figure below (the display data D1 to D36 and the control data) must be sent.

Note: At the LC75834JE, the display data D33 to D36 must be set to 0.

Control Data Functions

1. P0 to P3: Segment output port/general-purpose output port switching control data.

These control data bits switch the S1/P1 to S8/P8 output pins between their segment output port and general-purpose output port functions.

	Contro	ol data		Output pin states							
P0	P1	P2	P3	S1/P1	S2/P2	S3/P3	S4/P4	S5/P5	S6/P6	S7/P7	S8/P8
0	0	0	0	S1	S2	S3	S4	S5	S6	S7	S8
0	0	0	1	P1	S2	S3	S4	S5	S6	S7	S8
0	0	1	0	P1	P2	S3	S4	S5	S6	S7	S8
0	0	1	1	P1	P2	P3	S4	S5	S6	S7	S8
0	1	0	0	P1	P2	P3	P4	S5	S6	S7	S8
0	1	0	1	P1	P2	P3	P4	P5	S6	S7	S8
0	1	1	0	P1	P2	P3	P4	P5	P6	S7	S8
0	1	1	1	P1	P2	P3	P4	P5	P6	P7	S8
1	0	0	0	P1	P2	P3	P4	P5	P6	P7	P8

Note: Sn (n = 1 to 8): Segment output ports

Pn (n = 1 to 8): General-purpose output ports

Also note that when the general-purpose output port function is selected, the output pins and the display data will have the correspondences listed in the tables below.

Output pin	Corresponding display data
S1/P1	D1
S2/P2	D5
S3/P3	D9
S4/P4	D13

Output pin	Corresponding display data
S5/P5	D17
S6/P6	D21
S7/P7	D25
S8/P8	D29

For example, if the output pin S4/P4 has the general-purpose output port function selected, it will output a high level (V_{LCD}) when the display data D13 is 1, and will output a low level (V_{SS}) when D13 is 0.

2. DR: 1/2-bias drive or 1/3-bias drive switching control data This control data bit selects either 1/2-bias drive or 1/3-bias drive.

DR	Drive type	
0) 1/3-bias drive	
1	1/2-bias drive	

3. SC: Segments on/off control data

This control data bit controls the on/off state of the segments.

SC	Display state
0	On
1	Off

However, note that when the segments are turned off by setting SC to 1, the segments are turned off by outputting segment off waveforms from the segment output pins.

4. BU: Normal mode/power-saving mode control data

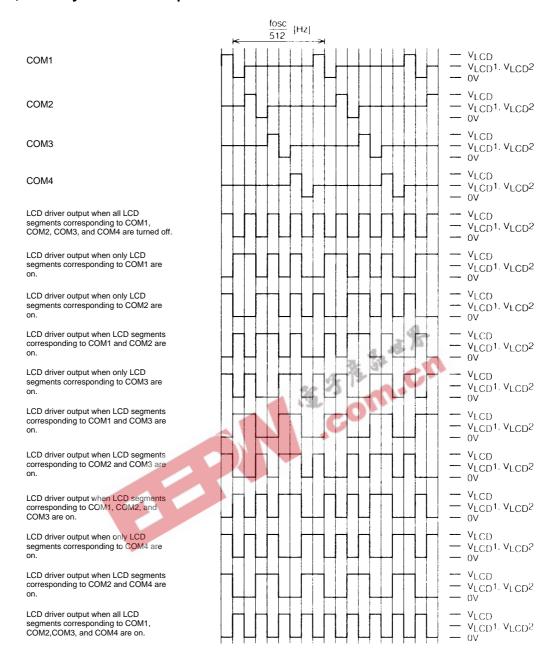
This control data bit selects either normal mode or power-saving mode.

BU			Mode
0	Normal mode		
1		output pins tha	pin oscillator is stopped, and the common and segment output pins go to the VSS level. However, the t are set to be general-purpose output ports by the control data P0 to P3 can be used as general-

Display Data to Segment Output Pin Correspondence

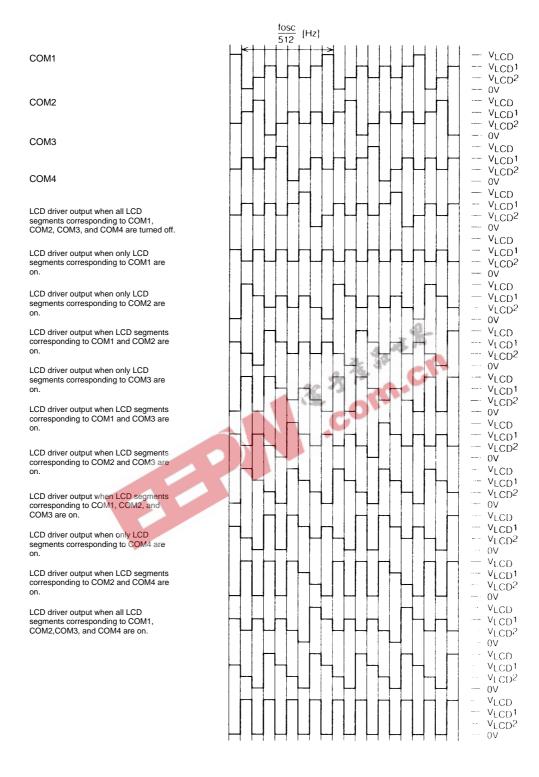
Segment output pin	COM1	COM2	СОМЗ	COM4
S1/P1	D1	D2	D3	D4
S2/P2	D5	D6	D7	D8
S3/P3	D9	D10	D11	D12
S4/P4	D13	D14	D15	D16
S5/P5	D17	D18	D19	D20
S6/P6	D21	D22	D23	D24
S7/P7	D25	D26	D27	D28
S8/P8	D29	D30	D31	D32
S9	D33	D34	D35	D36
S10	D37	D38	D39	D40
S11	D41	D42	D43	D44
S12	D45	D46	D47	D48
S13	D49	D50	D51	D52
S14	D53	D54	D55	D56
S15	D57	D58	D59	D60
S16	D61	D62	D63	D64
S17	D65	D66	D67	D68

Segment output pin	COM1	COM2	СОМЗ	COM4
S18	D69	D70	D71	D72
S19	D73	D74	D75	D76
S20	D77	D78	D79	D80
S21	D81	D82	D83	D84
S22	D85	D86	D87	D88
S23	D89	D90	D91	D92
S24	D93	D94	D95	D96
S25	D97	D98	D99	D100
S26	D101	D102	D103	D104
S27	D105	D106	D107	D108
S28	D109	D110	D111	D112
S29	D113	D114	D115	D116
S30	D117	D118	D119	D120
S31	D121	D122	D123	D124
S32	D125	D126	D127	D128
S33	D129	D130	D131	D132
S34	D133	D134	D135	D136


Note: This applies to the case where the S1/P1 to S8/P8 output pins are set to be segment output ports.

The LC75834JE do not have the S9, S18, S27, S34 output pins.

For example, the table below lists the segment output states for the S11 output pin.


Display data				(24)	
D41	D42	D43	D44	Segment output pin (S11) state	
0	0	0	0	The LCD segments corresponding to COM1 to COM4 are off.	
0	0	0	1	The LCD segments corresponding to COM4 is on.	
0	0	1	0	The LCD segments corresponding to COM3 is on.	
0	0	1	1	The LCD segments corresponding to COM3 and COM4 are on.	
0	1	0	0	The LCD segments corresponding to COM2 is on.	
0	1	0	1	The LCD segments corresponding to COM2 and COM4 are on.	
0	1	1	0	The LCD segments corresponding to COM2 and COM3 are on.	
0	1	1	1	The LCD segments corresponding to COM2, COM3 and COM4 are on.	
1	0	0	0	The LCD segments corresponding to COM1 is on.	
1	0	0	1	The LCD segments corresponding to COM1 and COM4 are on.	
1	0	1	0	The LCD segments corresponding to COM1 and COM3 are on.	
1	0	1	1	The LCD segments corresponding to COM1, COM3 and COM4 are on.	
1	1	0	0	The LCD segments corresponding to COM1 and COM2 are on.	
1	1	0	1	The LCD segments corresponding to COM1, COM2 and COM4 are on.	
1	1	1	0	The LCD segments corresponding to COM1 to COM3 are on.	
1	1	1	1	The LCD segments corresponding to COM1 to COM4 are on.	

1/2 Bias, 1/4 Duty Drive Technique

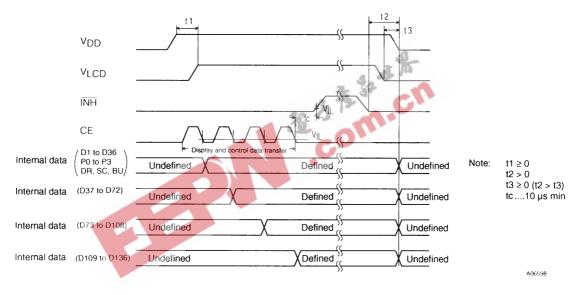
1/2 Bias, 1/4 Duty Waveforms

1/3 Bias, 1/4 Duty Drive Technique

A06595

1/3 Bias, 1/4 Duty Waveforms

The INH pin and Display Control


Since the LSI internal data (the display data and the control data) is undefined when power is first applied, applications should set the $\overline{\text{INH}}$ pin low at the same time as power is applied to turn off the display (LC75834E, LC75834W: This sets the S1/P1 to S8/P8, S9 to S34, and COM1 to COM4 to the V_{SS} level. LC75834JE: This sets the S1/P1 to S8/P8, S10 to S17, S19 to S26, S28 to S33, and COM1 to COM4 to the V_{SS} level.) and during this period send serial data from the controller. The controller should then set the $\overline{\text{INH}}$ pin high after the data transfer has completed. This procedure prevents meaningless displays at power on. (See Figure 3.)

Notes on the Power On/Off Sequences

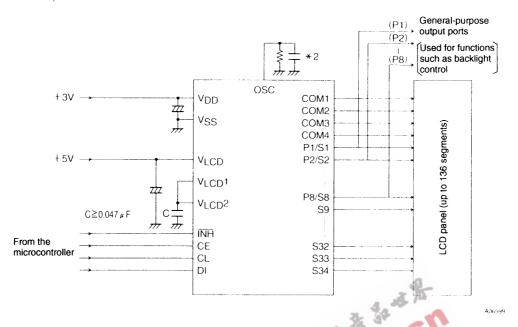
Applications should observe the following sequence when turning the LC75834E, LC75834W, and LC75834JE power on and off.

- At power on: Logic block power supply (V_{DD}) on \rightarrow LCD driver block power supply (V_{LCD}) on
- At power off: LCD driver block power supply (V_{LCD}) off \rightarrow Logic block power supply (V_{DD}) off

However, if the logic and LCD driver block use a shared power supply, then the power supplies can be turned on and off at the same time.

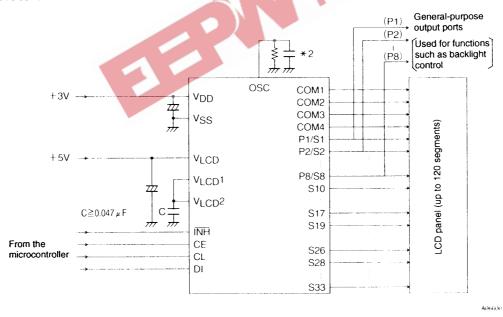
Note: At the LC75834JE, the display data D33 to D36, D69 to D72, D105 to D108, D133 to D136 must be set to 0.

Figure 3


Notes on Controller Transfer of Display Data

Since the LC75834E, LC75834W, and LC75834JE accept display data divided into four separate transfer operations, we recommend that applications transfer all of the display data within a period of less than 30 ms to prevent observable degradation of display quality.

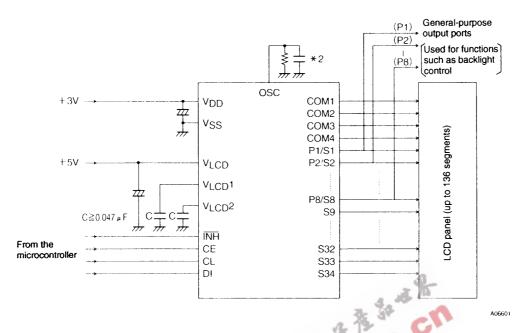
Sample Application Circuit 1


1/2 Bias (for use with normal size panels)

• LC75834E, LC75834W

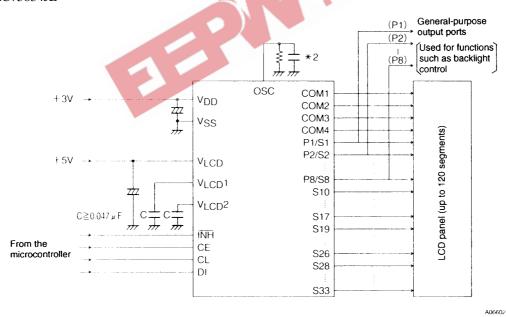
Note: *2 When a capacitor except the recommended external capacitance (C_{OSC} = 680 pF) is connected the OSC pin, we recommend that applications connect the OSC pin with a capacitor in the range 220 to 2200pF.

• LC75834JE



Note: *2 When a capacitor except the recommended external capacitance (C_{OSC} = 680 pF) is connected the OSC pin, we recommend that applications connect the OSC pin with a capacitor in the range 220 to 2200pF.

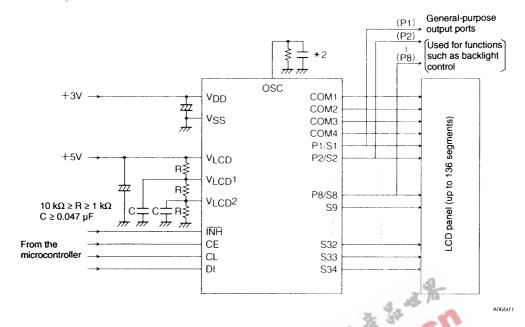
Sample Application Circuit 2


1/3 Bias (for use with normal size panels)

• LC75834E, LC75834W

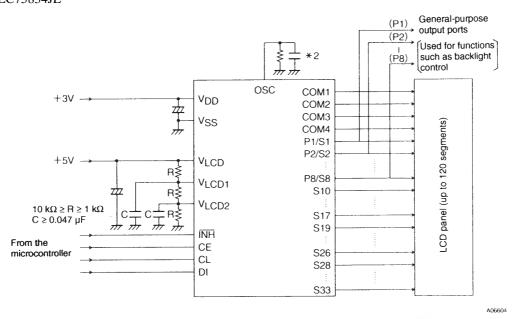
Note: *2 When a capacitor except the recommended external capacitance (C_{OSC} = 680 pF) is connected the OSC pin, we recommend that applications connect the OSC pin with a capacitor in the range 220 to 2200pF.

• LC75834JE



Note: *2 When a capacitor except the recommended external capacitance (C_{OSC} = 680 pF) is connected the OSC pin, we recommend that applications connect the OSC pin with a capacitor in the range 220 to 2200pF.

Sample Application Circuit 3


1/3 Bias (for use with large panels)

• LC75834E, LC75834W

Note: *2 When a capacitor except the recommended external capacitance (C_{OSC} = 680 pF) is connected the OSC pin, we recommend that applications connect the OSC pin with a capacitor in the range 220 to 2200pF.

• LC75834JE

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of June 1997. Specifications and information herein are subject to change without notice.