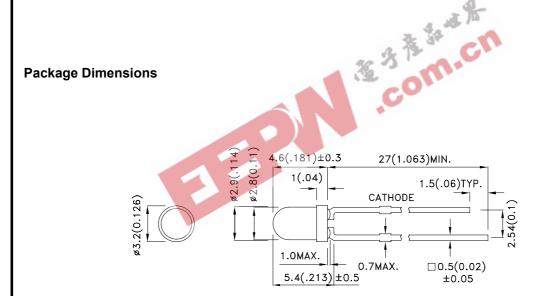


T-1 (3mm) SOLID STATE LAMP

Part Number: WP7104LSRD


Super Bright Red

Features

- LOW POWER CONSUMPTION.
- POPULAR T-1 DIAMETER PACKAGE.
- GENERAL PURPOSE LEADS.
- RELIABLE AND RUGGED.
- LONG LIFE SOLID STATE RELIABILITY.
- AVAILABLE ON TAPE AND REEL.
- LOW CURRENT IF=2mA OPERATING.
- RoHS COMPLIANT.

Description

The Super Bright Red source color devices are made with Gallium Aluminum Arsenide Red Light Emitting Diode.

- 1. All dimensions are in millimeters (inches).
- 2. Tolerance is ±0.25(0.01") unless otherwise noted.
- 3. Lead spacing is measured where the leads emerge from the package.4. Specifications are subject to change without notice.

SPEC NO: DSAF2310 **REV NO: V.3 DATE: MAY/18/2007** PAGE: 1 OF 6 APPROVED: WYNEC CHECKED: Allen Liu DRAWN: Y.L.LI ERP: 1101009313

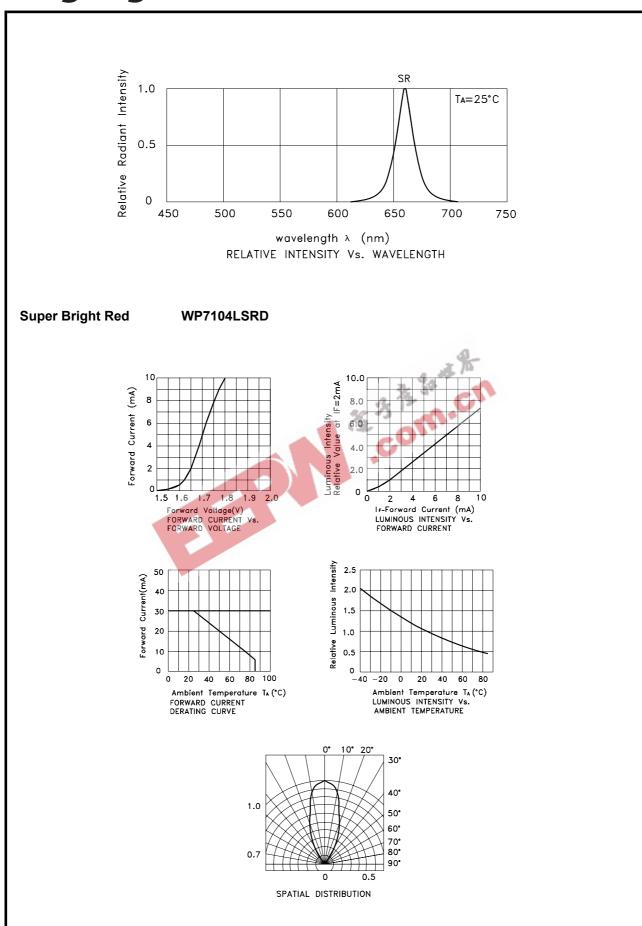
Selection Guide

Part No.	Dice	Lens Type	lv (mcd) [2] @ 2mA		Viewing Angle [1]
		3,1	Min.	Тур.	201/2
WP7104LSRD	7104LSRD Super Bright Red (GaAlAs)		8	20	40°

- 1. θ 1/2 is the angle from optical centerline where the luminous intensity is 1/2 the optical centerline value. 2. Luminous intensity/ luminous Flux: +/-15%.

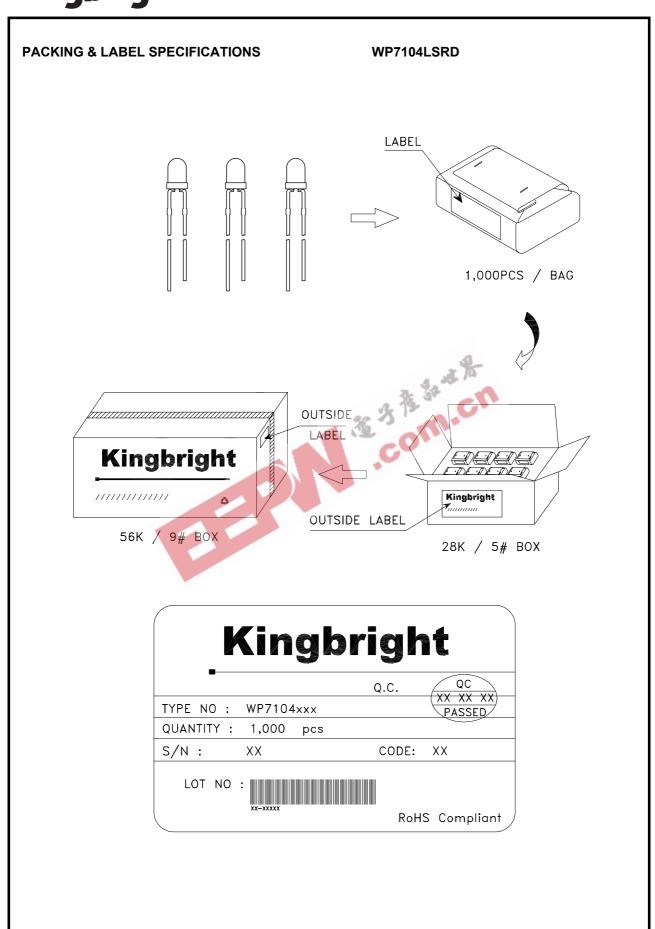
Electrical / Optical Characteristics at TA=25°C

Symbol	Parameter	Device	Тур.	Max.	Units	Test Conditions
λpeak	Peak Wavelength	Super Bright Red	660	4.16	nm	IF=2mA
λD [1]	Dominant Wavelength	Super Bright Red	640	30	nm	IF=2mA
Δλ1/2	Spectral Line Half-width	Super Bright Red	20	William	nm	IF=2mA
С	Capacitance	Super Bright Red	45		pF	VF=0V;f=1MHz
VF [2]	Forward Voltage	Super Bright Red	1.65	2.5	V	IF=2mA
lr	Reverse Current	Super Bright Red		10	uA	VR = 5V


- 1.Wavelength: +/-1nm.
- 2. Forward Voltage: +/-0.1V.

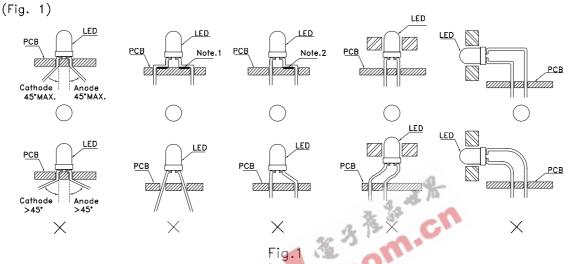
Absolute Maximum Ratings at TA=25°C

Parameter	Super Bright Red	Units	
Power dissipation	75	mW	
DC Forward Current	30	mA	
Peak Forward Current [1]	155	mA	
Reverse Voltage	5	V	
Operating/Storage Temperature	-40°C To +85°C		
Lead Solder Temperature [2]	260°C For 3 Seconds		
Lead Solder Temperature [3]	260°C For 5 Seconds		

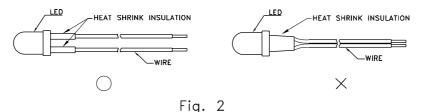

- 1. 1/10 Duty Cycle, 0.1ms Pulse Width.
- 2. 2mm below package base.
 5mm below package base.

SPEC NO: DSAF2310 **REV NO: V.3 DATE: MAY/18/2007** PAGE: 2 OF 6 **APPROVED: WYNEC CHECKED: Allen Liu** DRAWN: Y.L.LI ERP: 1101009313

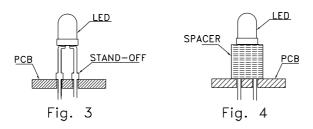
 SPEC NO: DSAF2310
 REV NO: V.3
 DATE: MAY/18/2007
 PAGE: 3 OF 6


 APPROVED: WYNEC
 CHECKED: Allen Liu
 DRAWN: Y.L.LI
 ERP: 1101009313

SPEC NO: DSAF2310 APPROVED: WYNEC REV NO: V.3 CHECKED: Allen Liu DATE: MAY/18/2007 DRAWN: Y.L.LI PAGE: 4 OF 6 ERP: 1101009313


LED MOUNTING METHOD

1. The lead pitch of the LED must match the pitch of the mounting holes on the PCB during component placement. Lead—forming may be required to insure the lead pitch matches the hole pitch. Refer to the figure below for proper lead forming procedures.

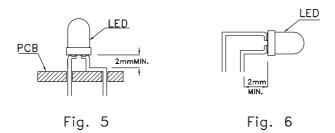


" \bigcirc " Correct mounting method " \times " Incorrect mounting method Note 1-2: Do not route PCB trace in the contact area between the leadframe and the PCB to prevent short-circuits.

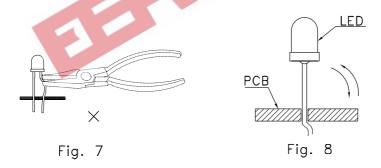
2. When soldering wire to the LED, use individual heat—shrink tubing to insulate the exposed leads to prevent accidental contact short—circuit. (Fig. 2)

3. Use stand—offs (Fig. 3) or spacers (Fig. 4) to securely position the LED above the PCB.

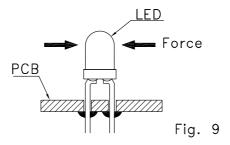
PAGE: 5 OF 6


ERP: 1101009313

SPEC NO: DSAF2310 REV NO: V.3 DATE: MAY/18/2007


APPROVED: WYNEC CHECKED: Allen Liu DRAWN: Y.L.LI

LEAD FORMING PROCEDURES


1. Maintain a minimum of 2mm clearance between the base of the LED lens and the first lead bend. (Fig. 5 and 6)

- 2. Lead forming or bending must be performed before soldering, never during or after Soldering.
- 3. Do not stress the LED lens during lead—forming in order to fractures in the lens epoxy and damage the internal structures.
- 4. During lead forming, use tools or jigs to hold the leads securely so that the bending force will not be transmitted to the LED lens and its internal structures. Do not perform lead forming once the component has been mounted onto the PCB. (Fig. 7)
- 5. Do not bend the leads more than twice. (Fig. 8)

6. After soldering or other high—temperature assembly, allow the LED to cool down to 50°C before applying outside force (Fig. 9). In general, avoid placing excess force on the LED to avoid damage. For any questions please consult with Kingbright representative for proper handling procedures.

 SPEC NO: DSAF2310
 REV NO: V.3
 DATE: MAY/18/2007
 PAGE: 6 OF 6

 APPROVED: WYNEC
 CHECKED: Allen Liu
 DRAWN: Y.L.LI
 ERP: 1101009313