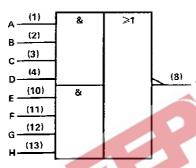
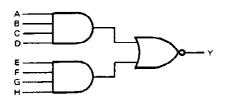
DECEMBER 1983-REVISED MARCH 1988

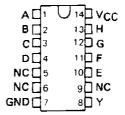

- Package Options Include "Small Outline" Packages, Ceramic Chip Carriers and Flat Packages, and Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

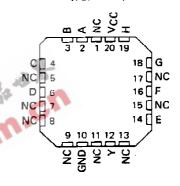
These devices contain 2-wide 4-input AND-OR-INVERT gates. They perform the Boolean function $Y = \overline{ABCD + EFGH}$.

The SN54LS55 is characterized for operation over the full military temperature range of $-55\,^{\circ}\text{C}$ to $125\,^{\circ}\text{C}$. The SN74LS55 is characterized for operation from $0\,^{\circ}\text{C}$ to $70\,^{\circ}\text{C}$.

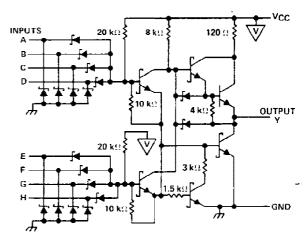

logic symbol†


positive logic: $Y = \overline{ABCD + EFGH}$

Pin numbers shown are for D, J, N, and W packages.


logic diagram

SN54LS55 . . . J OR W PACKAGE SN74LS55 . . . D OR N PACKAGE (TOP VIEW)



SN54LS55 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

schematic

Resistor values shown are nominal.

[†]This symbol is in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12.

SN54LS55, SN74LS55 2-WIDE 4-INPUT AND-OR-INVERT GATES

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note) 1),,,,,,,,,,,,,,,,,,,,,,,,,,,	
Input voltage		
Operating free-air temperature:	SN54LS55	~55°C to 125°C
	SN74LS55	0°C to 70°C
Storage temperature range		-65°C to 150°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		S	SN54LS55			SN74LS55		
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
νcc	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
V _{1H}	High-level input voltage	2			2		_	V
VIL	Low-level input voltage			0.7			0.8	V
ЮН	High-level output current		_	~ 0.4			- 0.4	mA
loL	Low-level output current		43	4	L		8	mΑ
TA	Operating free-air temperature	– 55	ID.	125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	\$N54L\$55		SN74LS55			
	TEST CONDITIONS.	MIN TYP	MAX	MIN	TYP\$	MAX	UNIT
V _{IK}	V _{CC} = MIN, I _I = -18 mA		- 1.5			1.5	V
Voн	V _{CC} = MIN, V _{IL} = MAX, I _{OH} = -0.4 mA	2.5 3.4		2.7	3.4		V
Va.	$V_{CC} = MIN$, $V_{1H} = 2 V$, $I_{OL} = 4 mA$	0.25	0.4		0.25	0.4	V
VOL	V _{CC} = MIN, V _{IH} = 2 V, I _{OL} = 8 mA				0.35	0.5	
Ιį	$V_{CC} = MAX$, $V_{\parallel} = 7 V$		0.1	<u> </u>	_	0.1	mΑ
11н	V _{CC} = MAX. V _I = 2.7 V	_	20			20	ДД
ΗL	$V_{CC} = MAX$, $V_1 = 0.4 V$		- 0.4	ſ		0.4	mΑ
los§	VCC = MAX	- 20	100	- 20		- 100	mΑ
ГССН	VCC = MAX, VI = 0 V	0.4	8.0		0.4	0.8	mΑ
ICCL	VCC = MAX, See Note 2	0.7	1.3		0.7	1.3	mΑ

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (see note 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN TYP	MAX	UNIT
^t PLH	Any	· ×	$R_1 \approx 2 k\Omega$, $C_1 = 15 pF$	12	20	ns
^t PHL	,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		12.5	20	ns

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

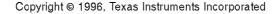
[‡] All typical values are at $V_{CC} = 5 \text{ V}$, $T_{\Delta} = 25^{\circ} \text{ C}$.

[§]Not more than one output should be shorted at a time, and the duration of the short-circuit should not exceed one second. NOTE 2: All outputs of one AND gate at 4.5 V, all others at GND.

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.


Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

