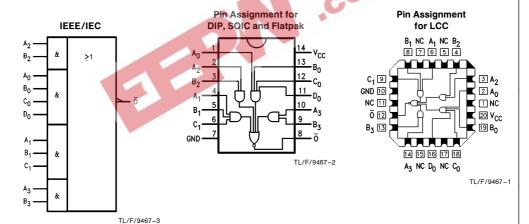


54F/74F64 4-2-3-2-Input AND-OR-Invert Gate

General Description

This device contains gates configured to perform a 4-2-3-2 input AND-OR-INVERT function.


Commercial	Military	Package Number	Package Description		
74F64PC		N14A	14-Lead (0.300" Wide) Molded Dual-In-Line		
	54F64DM (Note 2)	J14A	14-Lead Ceramic Dual-In-Line		
74F64SC (Note 1)		M14A	14-Lead (0.150" Wide) Molded Small Outline, JEDEC		
	54F64FM (Note 2)	W14B	14-Lead Cerpack		
	54F64LM (Note 2)	E20A	20-Lead Ceramic Leadless Chip Carrier, Type C		

Note 1: Devices also available in 13" reel. Use suffix = SCX.

 $\textbf{Note 2:} \ \textbf{Military grade device with environmental and burn-in processing.} \ \textbf{Use suffix} = \ \texttt{DMQB, FMQB} \ \textbf{and LMQB.}$

Logic Symbol

Connection Diagrams

Unit Loading/Fan Out

		54F/74F				
Pin Names	Description	U.L. HIGH/LOW	Input I _{IH} /I _{IL} Output I _{OH} /I _{OL}			
A_n , B_n , C_n , D_n	Inputs Output	1.0/1.0 50/33.3	20 μA/ – 0.6 mA – 1 mA/20 mA			

TRI-STATE® is a registered trademark of National Semiconductor Corporation.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature -65°C to +150°C Ambient Temperature under Bias -55°C to $+125^{\circ}\text{C}$ -55°C to +175°C Junction Temperature under Bias -55° C to $+150^{\circ}$ C Plastic

V_{CC} Pin Potential to Ground Pin -0.5V to +7.0VInput Voltage (Note 2) -0.5V to +7.0VInput Current (Note 2) $-30\ \text{mA}$ to $+5.0\ \text{mA}$

Voltage Applied to Output in HIGH State (with V_{CC} = 0V)

 $-0.5 \mbox{V to V}_{CC} \\ -0.5 \mbox{V to } +5.5 \mbox{V}$ Standard Output TRI-STATE® Output

Current Applied to Output

in LOW State (Max) twice the rated I_{OL} (mA)

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions

Free Air Ambient Temperature

Military -55°C to +125°C Commercial $0^{\circ}C$ to $\,+\,70^{\circ}C$

Supply Voltage

 $+\,4.5V$ to $+\,5.5V$ Military Commercial +4.5V to +5.5V

DC Electrical Characteristics

DC EI	ectrical Chara	cteristics						A R		
Symbol	bol Parameter		54F/74F			Units	Vcc	Conditions		
Symbol	Faranie	rarameter		Min Typ		Office	VCC	Conditions		
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal		
V_{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal		
V_{CD}	Input Clamp Diode Voltage			4	-1.2	V	Min	$I_{\text{IN}} = -18 \text{ mA}$		
V _{OH}	Output HIGH Voltage	54F 10% V _{CC} 74F 10% V _{CC} 74F 5% V _{CC}	2.5 2.5 2.7			V	Min	$I_{OH} = -1 \text{ mA}$ $I_{OH} = -1 \text{ mA}$ $I_{OH} = -1 \text{ mA}$		
V _{OL}	Output LOW Voltage	54F 10% V _{CC} 74F 10% V _{CC}			0.5 0.5	V	Min	$I_{OL} = 20 \text{ mA}$ $I_{OL} = 20 \text{ mA}$		
I _{IH}	Input HIGH Current	54F 74F			20.0 5.0	μΑ	Max	$V_{\text{IN}} = 2.7V$		
I _{BVI}	Input HIGH Current Breakdown Test	54F 74F			100 7.0	μΑ	Max	V _{IN} = 7.0V		
I _{CEX}	Output High Leakage Current	54F 74F			250 50	μΑ	Max	$V_{OUT} = V_{CC}$		
V _{ID}	Input Leakage Test	74F	4.75			V	0.0	$I_{\text{ID}} = 1.9 \mu\text{A}$ All Other Pins Grounded		
I _{OD}	Output Leakage Circuit Current	74F			3.75	μΑ	0.0	V _{IOD} = 150 mV All Other Pins Grounded		
I _{IL}	Input LOW Current				-0.6	mA	Max	V _{IN} = 0.5V		
los	Output Short-Circuit Current		-60		-150	mA	Max	V _{OUT} = 0V		
I _{CCH}	Power Supply Current			1.9	2.8	mA	Max	V _O = HIGH		
I _{CCL}	Power Supply Current			3.1	4.7	mA	Max	V _O = LOW		

AC Electrical Characteristics										
Symbol					54F		74F		Units	
	Parameter				$T_A, V_{CC} = Mil$ $C_L = 50pF$		T _A , V _{CC} = Com C _L = 50 pF			
		Min	Тур	Max	Min	Max	Min	Max		
t _{PLH}	Propagation Delay	2.5	4.6	6.5	2.5	8.5	2.5	7.5	ne	

Ordering Information

t_{PHL}

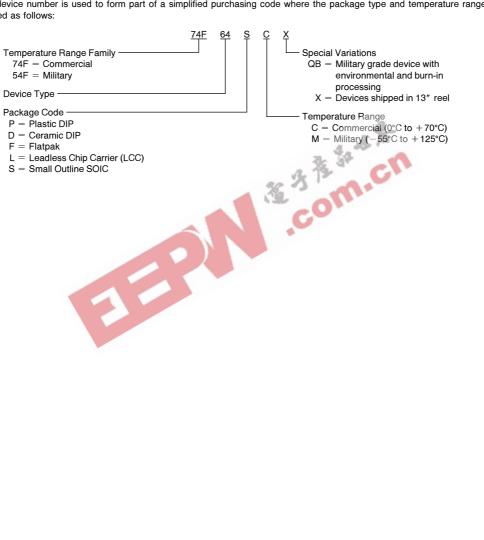
 A_n , B_n , C_n , D_n to \overline{O}

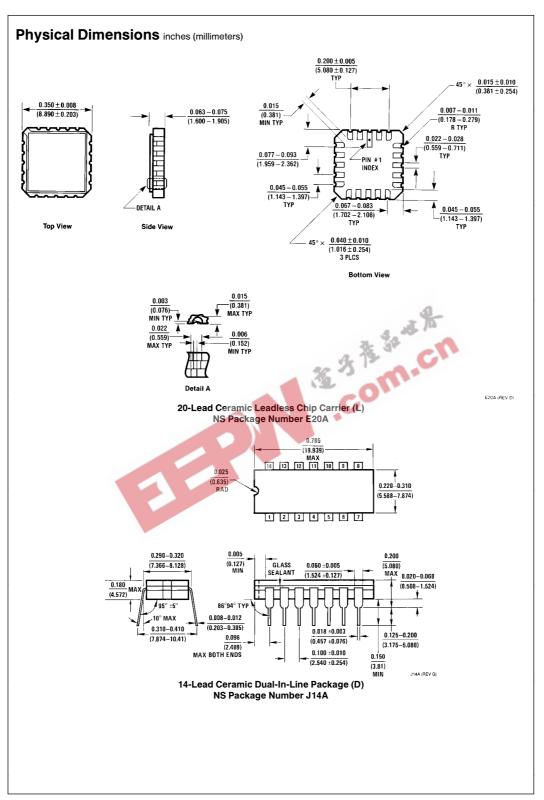
1.5

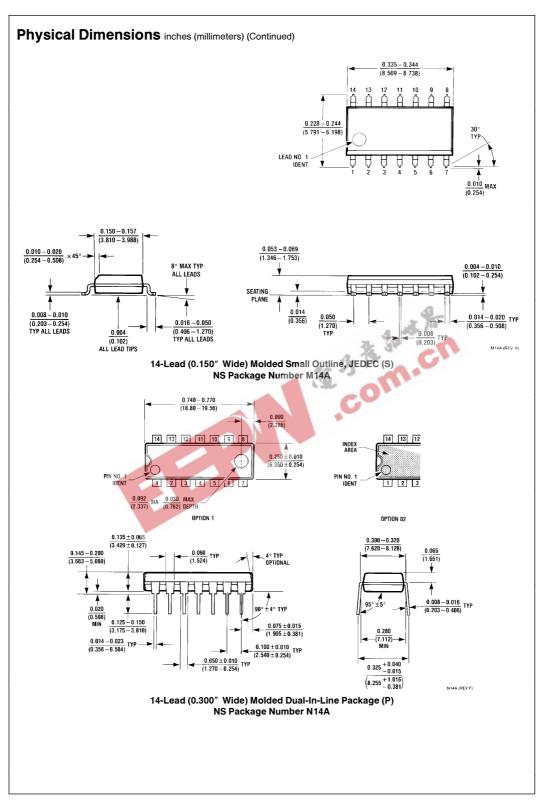
3.2

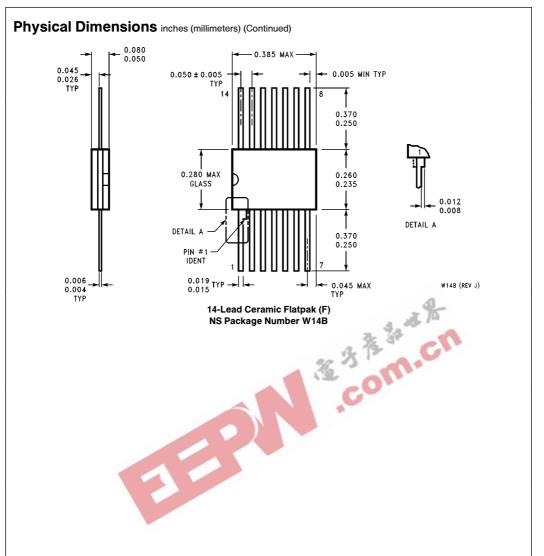
The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:

4.5


1.5


6.5


1.5


ns

5.5

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Europe Fax: (+49) 0-180-530 85 86 Email: cnjwge@tevm2.nsc.com
Deutsch Tel: (+49) 0-180-530 85 85 English Tel: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-532 13 6 80

National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tei: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408