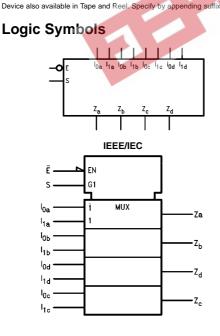
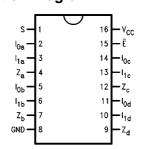
FAIRCHILD

74AC157 • 74ACT157 **Quad 2-Input Multiplexer**

General Description


November 1988 Revised November 1999

Features


- I_{CC} and I_{OZ} reduced by 50%
- Outputs source/sink 24 mA
- ACT157 has TTL-compatible inputs

Ordering Code:

FAIRC			November 1988 Revised November 1999	74AC157
	7 • 74ACT [.] Input Mult	-		• 74ACT1
	is a high-speed quad	d 2-input multiplexer. an be selected using	Features ■ I _{CC} and I _{OZ} reduced by 50% ■ Outputs source/sink 24 mA	157 Quad
the common Sel present the sele	cted data in the true can also be used as	 the four outputs (noninverted) form. a function generator. 	 Outputs source/sink 24 mA ACT157 has TTL-compatible inputs 	2-Input
the common Sel present the sele The AC/ACT157	cted data in the true can also be used as	e (noninverted) form. a function generator.	•	2-Input
the common Sel present the sele The AC/ACT157	cted data in the true can also be used as Code:	e (noninverted) form. a function generator.	ACT157 has TTL-compatible inputs	2-Input
the common Sel present the sele The AC/ACT157 Ordering (Order Number	cted data in the true can also be used as Code: Package Number	e (noninverted) form. a function generator. 16-Lead Small Outline	ACT157 has TTL-compatible inputs	2-Input
the common Sel present the sele The AC/ACT157 Ordering (Order Number 74AC157SC	cted data in the true can also be used as Code: Package Number M16A	e (noninverted) form. a function generator. 16-Lead Small Outline 16-Lead Small Outline	ACT157 has TTL-compatible inputs Package Description Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Body	2-Input
the common Sel present the sele The AC/ACT157 Ordering (Order Number 74AC157SC 74AC157SJ	Code: Package Number M16A M16D	e (noninverted) form. a function generator. 16-Lead Small Outline 16-Lead Small Outline 16 -Lead Thin Shrink S	ACT157 has TTL-compatible inputs Package Description Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Body Package (SOP), EIAJ TYPE II, 5.3mm Wide	2-Input
the common Sel present the sele The AC/ACT157 Ordering (Order Number 74AC157SC 74AC157SJ 74AC157MTC	Code: Package Number M16A M16D MTC16	e (noninverted) form. a function generator. 16-Lead Small Outline 16-Lead Small Outline 16 -Lead Thin Shrink S 16-Lead Plastic Dual-	ACT157 has TTL-compatible inputs Package Description Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Body Package (SOP), EIAJ TYPE II, 5.3mm Wide Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide	
the common Sel present the sele The AC/ACT157 Ordering (Order Number 74AC157SC 74AC157SJ 74AC157MTC 74AC157PC	Code: Package Number M16A M16D MTC16 N16E	(noninverted) form. a function generator. 16-Lead Small Outline 16-Lead Small Outline 16 -Lead Thin Shrink S 16-Lead Plastic Dual-I 16-Lead Small Outline	ACT157 has TTL-compatible inputs Package Description Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Body Package (SOP), EIAJ TYPE II, 5.3rnm Wide Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide n-Line Package (PDIP), JEDEC MS-001, 0.300" Wide	2-Input
the common Sel present the sele The AC/ACT157 Order Number 74AC157SC 74AC157SJ 74AC157MTC 74AC157PC 74ACT157SC	Code: Package Number M16A M16D MTC16 N16E M16A	(noninverted) form. a function generator. 16-Lead Small Outline 16-Lead Small Outline 16-Lead Thin Shrink S 16-Lead Plastic Dual-I 16-Lead Small Outline 16-Lead Small Outline	ACT157 has TTL-compatible inputs Package Description Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Body Package (SOP), EIAJ TYPE II, 5.3mm Wide Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide n-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Body	2-Input

Connection Diagram

Pin Descriptions

Pin Names	Description
I _{0a} –I _{0d}	Source 0 Data Inputs
I _{1a} –I _{1d}	Source 1 Data Inputs
Ē	Enable Input
S	Select Input
Z _a –Z _d	Outputs

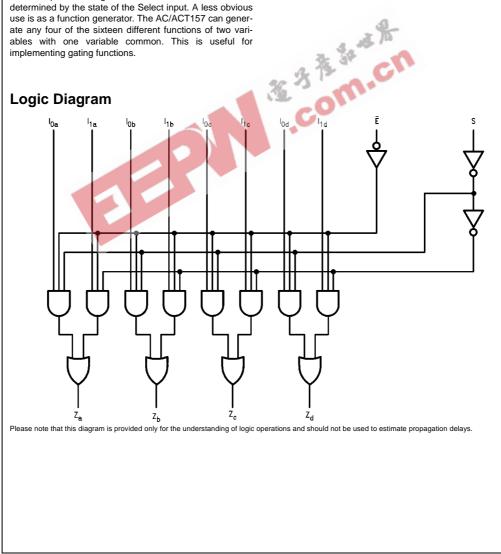
FACT™ is a trademark of Fairchild Semiconductor Corporation.

DS009929 © 1999 Fairchild Semiconductor Corporation

Functional Description

The AC/ACT157 is a quad 2-input multiplexer. It selects four bits of data from two sources under the control of a common Select input (S). The Enable input (E) is active-LOW. When \overline{E} is HIGH, all of the outputs (Z) are forced LOW regardless of all other inputs. The AC/ACT157 is the logic implementation of a 4-pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select input. The logic equations for the outputs are shown below:

 $Z_a = \overline{E} \bullet (I_{1a} \bullet S + I_{0a} \bullet \overline{S})$ $Z_{b} = \overline{E} \bullet (I_{1b} \bullet S + I_{0b} \bullet \overline{S})$ $Z_{c} = \overline{E} \bullet (I_{1c} \bullet S + I_{0c} \bullet \overline{S})$ $Z_d = \overline{E} \bullet (I_{1d} \bullet S + I_{0d} \bullet \overline{S})$


A common use of the AC/ACT157 is the moving of data from two groups of registers to four common output busses. The particular register from which the data comes is determined by the state of the Select input. A less obvious use is as a function generator. The AC/ACT157 can generate any four of the sixteen different functions of two variables with one variable common. This is useful for implementing gating functions.

Truth Table

	In	puts		Outputs
E	S	I ₀	I ₁	Z
Н	Х	Х	Х	L
L	н	Х	L	L
L	н	Х	н	н
L	L	L	Х	L
L	L	Н	Х	н

H = HIGH Voltage Level L = LOW Voltage Level

X = Immaterial

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Diode Current (IIK)	
$V_{I} = -0.5V$	–20 mA
$V_I = V_{CC} + 0.5V$	+20 mA
DC Input Voltage (VI)	–0.5V to V _{CC} + 0.5V
DC Output Diode Current (I _{OK})	
$V_{O} = -0.5V$	–20 mA
$V_{O} = V_{CC} + 0.5V$	+20 mA
DC Output Voltage (V _O)	-0.5V to V _{CC} + 0.5V
DC Output Source	
or Sink Current (I _O)	±50 mA
DC V _{CC} or Ground Current	
per Output Pin (I _{CC} or I _{GND})	±50 mA
Storage Temperature (T _{STG})	-65°C to +150°C
Junction Temperature (T _J)	
PDIP	140°C

Recommended Operating Conditions

Supply Voltage (V _{CC})	
AC	2.0V to 6.0V
AC	2.00 10 0.00
ACT	4.5V to 5.5V
Input Voltage (V _I)	0V to V _{CC}
Output Voltage (V _O)	0V to V _{CC}
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Minimum Input Edge Rate ($\Delta V/\Delta t$)	
AC Devices	
$V_{\rm IN}$ from 30% to 70% of $V_{\rm CC}$	
V _{CC} @ 3.3V, 4.5V, 5.5V	125 mV/ns
Minimum Input Edge Rate ($\Delta V/\Delta t$)	
ACT Devices	
V _{IN} from 0.8V to 2.0V	
V _{CC} @ 4.5V, 5.5V	125 mV/ns
Note 1: Absolute maximum ratings are those values	

74AC157 • 74ACT157

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, with-out exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation of FACT™ circuits outside databook specifications. an.

					-01		
Symbol	Parameter	V _{cc}	T _A =	+25°C	$T_A = -40^{\circ}C$ to $+85^{\circ}C$	Units	Conditions
0,		(V)	Тур	Gu	aranteed Limits	00	
VIH	Minimum HIGH Level	3.0	1.5	2.1	2.1		$V_{OUT} = 0.1V$
	Input Voltage	4.5	2.25	3.15	3.15	V	or $V_{CC} - 0.1V$
		5.5	2.75	3.85	3.85		
VIL	Maximum LOW Level	3.0	1.5	0.9	0.9		V _{OUT} = 0.1V
	Input Voltage	4.5	2.25	1.35	1.35	V	or $V_{CC} - 0.1V$
		5.5	2.75	1.65	1.65		
V _{ОН}	Minimum HIGH Level	3.0	2.99	2.9	2.9		
	Output Voltage	4.5	4.49	4.4	4.4	V	$I_{OUT} = -50 \ \mu A$
		5.5	5.49	5.4	5.4		
							$V_{IN} = V_{IL} \text{ or } V_{IH}$
		3.0		2.56	2.46		$I_{OH} = -12 \text{ mA}$
		4.5		3.86	3.76	V	$I_{OH} = -24 \text{ mA}$
		5.5		4.86	4.76		$I_{OH} = -24 \text{ mA}$ (Note 2
V _{OL}	Maximum LOW Level	3.0	0.002	0.1	0.1		
	Output Voltage	4.5	0.001	0.1	0.1	V	$I_{OUT} = 50 \ \mu A$
		5.5	0.001	0.1	0.1		
							$V_{IN} = V_{IL} \text{ or } V_{IH}$
		3.0		0.36	0.44		$I_{OL} = 12 \text{ mA}$
		4.5		0.36	0.44	V	$I_{OL} = 24 \text{ mA}$
		5.5		0.36	0.44		I _{OL} = 24 mA (Note 2)
I _{IN}	Maximum Input	5.5		±0.1	±1.0	μA	$V_1 = V_{CC}$, GND
(Note 4)	Leakage Current	5.5		±0.1	±1.0	μη	
I _{OLD}	Minimum Dynamic	5.5			75	mA	V _{OLD} = 1.65V Max
I _{OHD}	Output Current (Note 3)	5.5			-75	mA	V _{OHD} = 3.85V Min
I _{CC}	Maximum Quiescent	5.5		4.0	40.0	μA	$V_{IN} = V_{CC}$
Note 4)	Supply Current	5.5		7.0	40.0	μΛ	or GND

Note 2: All outputs loaded; thresholds on input associated with output under test.

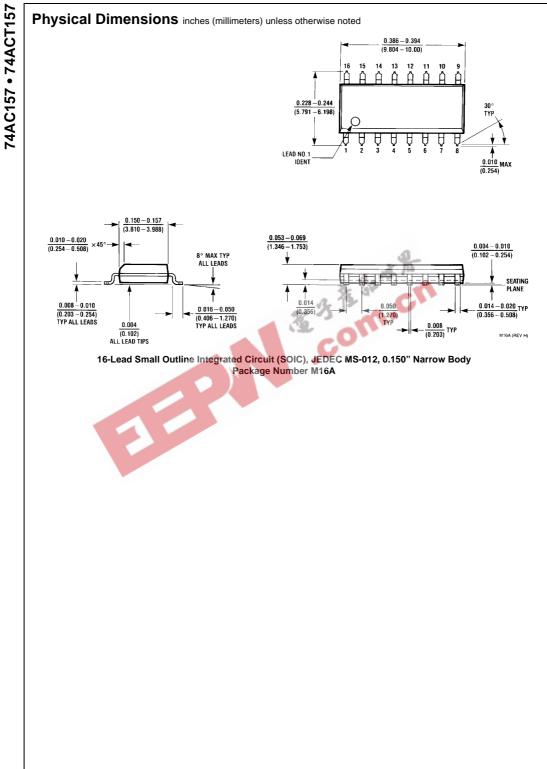
Note 3: Maximum test duration 2.0 ms, one output loaded at a time.

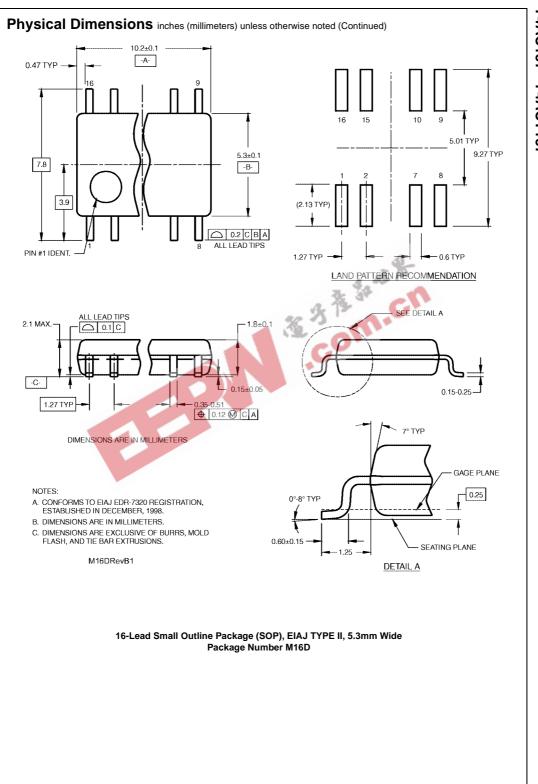
Note 4: $I_{\rm IN}$ and $I_{\rm CC}$ @ 3.0V are guaranteed to be less than or equal to the respective limit @ 5.5V $V_{\rm CC}.$

Cumhal	Deveryoter	Vcc	T _A =	+ 25°C	$T_A = -40^\circ C \text{ to } +85^\circ C$	Units	Conditions
Symbol	Parameter	(V)	Тур	Gu	aranteed Limits	Units	Conditions
VIH	Minimum HIGH Level	4.5	1.5	2.0	2.0	V	$V_{OUT} = 0.1V$
	Input Voltage	5.5	1.5	2.0	2.0	v	or $V_{CC} - 0.1V$
VIL	Maximum LOW Level	4.5	1.5	0.8	0.8	V	$V_{OUT} = 0.1V$
	Input Voltage	5.5	1.5	0.8	0.8	v	or $V_{CC} - 0.1V$
V _{OH}	Minimum HIGH Level	4.5	4.49	4.4	4.4	V	L 50A
	Output Voltage	5.5	5.49	5.4	5.4	v	$I_{OUT} = -50 \ \mu A$
							$V_{IN} = V_{IL} \text{ or } V_{IH}$
		4.5		3.86	3.76	V	$I_{OH} = -24 \text{ mA}$
		5.5		4.86	4.76		I _{OH} = -24 mA (No
V _{OL}	Maximum LOW Level	4.5	0.001	0.1	0.1	V	I _{OUT} = 50 μA
	Output Voltage	5.5	0.001	0.1	0.1	v	ι _{OUT} = 30 μΑ
							$V_{IN} = V_{IL} \text{ or } V_{IH}$
		4.5		0.36	0.44	V	I _{OL} = 24 mA
		5.5		0.36	0.44		I _{OL} = 24 mA (Note
I _{IN}	Maximum Input Leakage Current	5.5		±0.1	±1.0	μA	$V_I = V_{CC}, GND$
ICCT	Maximum				1.5		
	I _{CC} /Input	5.5	0.6		A 41.5	mA	$V_I = V_{CC} - 2.1V$
I _{OLD}	Minimum Dynamic	5.5		an Z	75	mA	V _{OLD} = 1.65V Ma
I _{OHD}	Output Current (Note 6)	5.5		32	-75	mA	V _{OHD} = 3.85V Mir
I _{CC}	Maximum Quiescent	5.5		4.0	40.0	μA	$V_{IN} = V_{CC}$
	Supply Current	5.5		4.0	40.0	μΑ	or GND

Note 6: Maximum test duration 2.0 ms, one output loaded at a time.

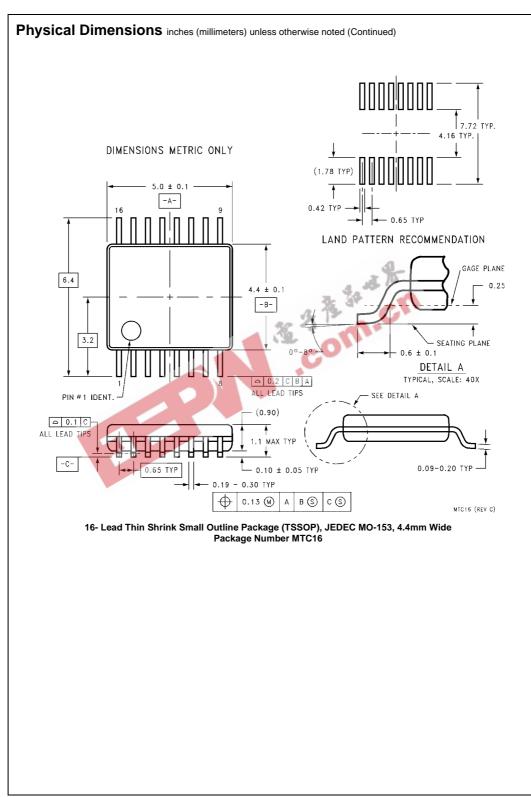
AC Electrical Characteristics for AC

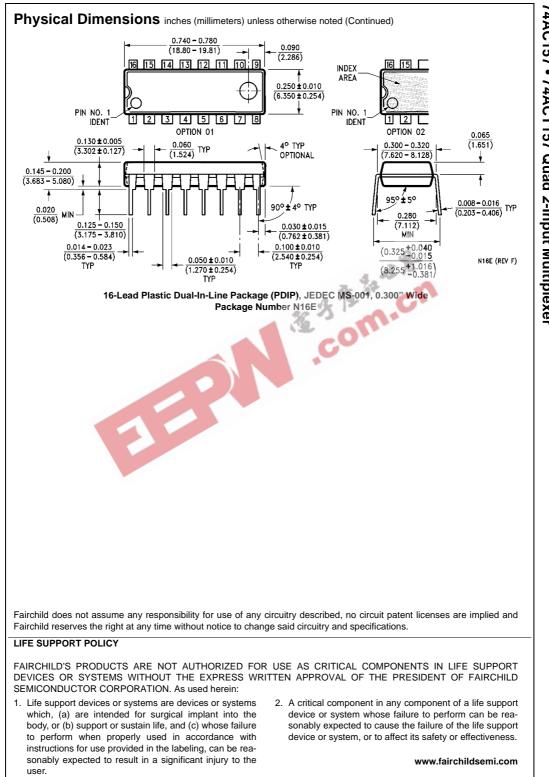

		Vcc		$T_A = +25^{\circ}C$		T _A = -40°	C to +85°C	
Symbol	Parameter	(V)		$C_L = 50 \ pF$		C _L =	50 pF	Units
		(Note 7)	Min	Тур	Max	Min	Max	
t _{PLH}	Propagation Delay	3.3	1.5	7.0	11.5	1.5	13.0	ns
	S to Z _n	5.0	1.5	5.5	9.0	1.5	10.0	115
t _{PHL}	Propagation Delay	3.3	1.5	6.5	11.0	1.5	12.0	ns
	S to Z _n	5.0	1.5	5.0	8.5	1.0	9.5	115
t _{PLH}	Propagation Delay	3.3	1.5	7.0	11.5	1.5	13.0	ns
	E to Z _n	5.0	1.5	5.5	9.0	1.5	10.0	115
t _{PHL}	Propagation Delay	3.3	1.5	6.5	11.0	1.5	12.0	ns
	E to Z _n	5.0	1.5	5.5	9.0	1.0	9.5	115
t _{PLH}	Propagation Delay	3.3	1.5	5.0	8.5	1.0	9.0	ns
	I _n to Z _n	5.0	1.5	4.0	6.5	1.0	7.0	115
t _{PHL}	Propagation Delay	3.3	1.5	5.0	8.0	1.0	9.0	ns
	I _n to Z _n	5.0	1.5	4.0	6.5	1.0	7.0	115


Note 7: Voltage Range 3.3 is $3.3V \pm 0.3V$

Voltage Range 5.0 is 5.0V \pm 0.5V

	SymbolParameter(V) (Note 8) $C_{L} = 50 \text{ pF}$ $C_{L} = 50 \text{ pF}$ Units.HPropagation Delay S to Z_{n} 5.02.05.59.01.510.0ns.4LPropagation Delay S to Z_{n} 5.02.05.59.52.010.5ns.4LPropagation Delay E to Z_{n} 5.02.05.59.52.010.5ns.4LPropagation Delay E to Z_{n} 5.01.56.010.01.511.5ns.4LPropagation Delay E to Z_{n} 5.01.55.08.51.09.0ns.4LPropagation Delay E to Z_{n} 5.01.54.07.01.08.5ns.4LPropagation Delay In to Z_{n} 5.01.54.57.51.08.5ns.4LPropagation Delay In to Z_{n} 5.01.54.57.51.08.5ns.4LPropagation Delay In to Z_{n} 5.01.54.57.51.08.5ns.4LPropagation Delay In to Z_{n} 5.01.54.57.51.08.5ns.4LPropagation Delay In to Z_{n} 5.01.59.6 $V_{CQ} = OPEN$ $V_{CQ} = OPEN$.4LPropagation Delay In to Z_{n} 5.01.59.6 $V_{CQ} = 5.0V$ $V_{CQ} = 5.0V$.4LInput Capacitance4.5 pF $V_{CQ} = 5.0V$ $V_{CQ} = 5.0V$ V_{C			V _{CC}		$T_A = +25^{\circ}C$		T _A = -40°C	C to +85°C	
LH Propagation Delay S to Z _n 5.0 2.0 5.5 9.0 1.5 10.0 ns HL Propagation Delay S to Z _n 5.0 2.0 5.5 9.5 2.0 10.5 ns LH Propagation Delay E to Z _n 5.0 2.0 5.5 9.5 2.0 10.5 ns LH Propagation Delay E to Z _n 5.0 1.5 6.0 10.0 1.5 11.5 ns HL Propagation Delay E to Z _n 5.0 1.5 5.0 8.5 1.0 9.0 ns LH Propagation Delay In to Z _n 5.0 1.5 4.0 7.0 1.0 8.5 ns HL Propagation Delay In to Z _n 5.0 1.5 4.5 7.5 1.0 8.5 ns HL Propagation Delay In to Z _n 5.0 1.5 4.5 7.5 1.0 8.5 ns Sobe 8: Voltage Range 5.0 is 5.0V ± 0.5V Conditions V _{CC} = OPEN V _{CC} = 5.0V V _{CC} = 5.0V <t< th=""><th>H Propagation Delay S to Z_n 5.0 2.0 5.5 9.0 1.5 10.0 ns HL Propagation Delay S to Z_n 5.0 2.0 5.5 9.5 2.0 10.5 ns HL Propagation Delay E to Z_n 5.0 2.0 5.5 9.5 2.0 10.5 ns H Propagation Delay E to Z_n 5.0 1.5 6.0 10.0 1.5 11.5 ns HL Propagation Delay E to Z_n 5.0 1.5 5.0 8.5 1.0 9.0 ns HL Propagation Delay In to Z_n 5.0 1.5 4.0 7.0 1.0 8.5 ns HL Propagation Delay In to Z_n 5.0 1.5 4.5 7.5 1.0 8.5 ns HL Propagation Delay In to Z_n 5.0 1.5 4.5 7.5 1.0 8.5 ns HL Propagation Delay In to Z_n 5.0 1.5 4.5 7.5 1.0 8.5<!--</th--><th>Symbol</th><th>Parameter</th><th></th><th></th><th></th><th></th><th></th><th></th><th>Units</th></th></t<>	H Propagation Delay S to Z _n 5.0 2.0 5.5 9.0 1.5 10.0 ns HL Propagation Delay S to Z _n 5.0 2.0 5.5 9.5 2.0 10.5 ns HL Propagation Delay E to Z _n 5.0 2.0 5.5 9.5 2.0 10.5 ns H Propagation Delay E to Z _n 5.0 1.5 6.0 10.0 1.5 11.5 ns HL Propagation Delay E to Z _n 5.0 1.5 5.0 8.5 1.0 9.0 ns HL Propagation Delay In to Z _n 5.0 1.5 4.0 7.0 1.0 8.5 ns HL Propagation Delay In to Z _n 5.0 1.5 4.5 7.5 1.0 8.5 ns HL Propagation Delay In to Z _n 5.0 1.5 4.5 7.5 1.0 8.5 ns HL Propagation Delay In to Z _n 5.0 1.5 4.5 7.5 1.0 8.5 </th <th>Symbol</th> <th>Parameter</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Units</th>	Symbol	Parameter							Units
Image: Single Conditions Single Conditions <th>Image: Sto Z_n Sto Z_n 5.0 2.0 5.5 9.0 1.5 10.0 ns HL Propagation Delay S to Z_n 5.0 2.0 5.5 9.5 2.0 10.5 ns HL Propagation Delay E to Z_n 5.0 1.5 6.0 10.0 1.5 11.5 ns HL Propagation Delay E to Z_n 5.0 1.5 5.0 8.5 1.0 9.0 ns HL Propagation Delay E to Z_n 5.0 1.5 5.0 8.5 1.0 9.0 ns HL Propagation Delay In to Z_n 5.0 1.5 4.0 7.0 1.0 8.5 ns HL Propagation Delay In to Z_n 5.0 1.5 4.5 7.5 1.0 8.5 ns HL Propagation Delay In to Z_n 5.0 1.5 4.5 7.5 1.0 8.5 ns HL Propagation Delay In to Z_n 5.0 1.5 4.5 7.5 1.0 8.5 ns ML Propagation Delay In to Z_n 5.0 1.5 PF <</th> <th></th> <th></th> <th>(Note 8)</th> <th>Min</th> <th>Тур</th> <th>Max</th> <th>Min</th> <th>Max</th> <th></th>	Image: Sto Z_n Sto Z_n 5.0 2.0 5.5 9.0 1.5 10.0 ns HL Propagation Delay S to Z_n 5.0 2.0 5.5 9.5 2.0 10.5 ns HL Propagation Delay E to Z_n 5.0 1.5 6.0 10.0 1.5 11.5 ns HL Propagation Delay E to Z_n 5.0 1.5 5.0 8.5 1.0 9.0 ns HL Propagation Delay E to Z_n 5.0 1.5 5.0 8.5 1.0 9.0 ns HL Propagation Delay In to Z_n 5.0 1.5 4.0 7.0 1.0 8.5 ns HL Propagation Delay In to Z_n 5.0 1.5 4.5 7.5 1.0 8.5 ns HL Propagation Delay In to Z_n 5.0 1.5 4.5 7.5 1.0 8.5 ns HL Propagation Delay In to Z_n 5.0 1.5 4.5 7.5 1.0 8.5 ns ML Propagation Delay In to Z_n 5.0 1.5 PF <			(Note 8)	Min	Тур	Max	Min	Max	
HL Propagation Delay S to Z_n 5.0 2.0 5.5 9.5 2.0 10.5 ns H Propagation Delay E to Z_n 5.0 1.5 6.0 10.0 1.5 11.5 ns HL Propagation Delay E to Z_n 5.0 1.5 6.0 10.0 1.5 11.5 ns HL Propagation Delay E to Z_n 5.0 1.5 5.0 8.5 1.0 9.0 ns HL Propagation Delay I_n to Z_n 5.0 1.5 4.0 7.0 1.0 8.5 ns HL Propagation Delay I_n to Z_n 5.0 1.5 4.0 7.0 1.0 8.5 ns HL Propagation Delay I_n to Z_n 5.0 1.5 4.5 7.5 1.0 8.5 ns Obte 8: Voltage Range 5.0 is 5.0V ± 0.5V State 8: Voltage Range 5.0 is 5.0V ± 0.5V V_CC = OPEN V_CC = OPEN N Input Capacitance 4.5 pF V_{CC} = OPEN V_{CC} = 5.0V ND Power Dissipation Capacitance 50.0 pF V_{CC} = 5.0V	HL Propagation Delay S to Z_n 5.0 2.0 5.5 9.5 2.0 10.5 ns HL Propagation Delay E to Z_n 5.0 1.5 6.0 10.0 1.5 11.5 ns HL Propagation Delay E to Z_n 5.0 1.5 5.0 8.5 1.0 9.0 ns HL Propagation Delay E to Z_n 5.0 1.5 5.0 8.5 1.0 9.0 ns HL Propagation Delay I_n to Z_n 5.0 1.5 4.0 7.0 1.0 8.5 ns HL Propagation Delay I_n to Z_n 5.0 1.5 4.0 7.0 1.0 8.5 ns HL Propagation Delay I_n to Z_n 5.0 1.5 4.5 7.5 1.0 8.5 ns Ope Propagation Delay I_n to Z_n 5.0 1.5 4.5 7.5 1.0 8.5 ns Ope State 8: Voltage Range 5.0 is 5.0V ± 0.5V State 8: PF V _{CO} = OPEN V _{CO} = OPEN N Input Capacitance 4.5 PF V _{CO} = OPEN	H		5.0	2.0	5.5	9.0	1.5	10.0	ns
S to Z_n 5.0 2.0 5.3 9.5 2.0 10.3 Its H Propagation Delay 5.0 1.5 6.0 10.0 1.5 11.5 ns H Propagation Delay 5.0 1.5 5.0 8.5 1.0 9.0 ns H Propagation Delay 5.0 1.5 5.0 8.5 1.0 9.0 ns H Propagation Delay 5.0 1.5 4.0 7.0 1.0 8.5 ns H Propagation Delay 5.0 1.5 4.5 7.5 1.0 8.5 ns H Propagation Delay 5.0 1.5 4.5 7.5 1.0 8.5 ns H Propagation Delay 5.0 1.5 4.5 7.5 1.0 8.5 ns M In to Z_n 5.0 1.5 PF V_{CC} = OPEN P N Input Capacitance 4.5 PF V_{CC} = 0.0V	S to Z_n 5.0 2.0 5.3 9.3 2.0 10.3 Its H Propagation Delay 5.0 1.5 6.0 10.0 1.5 11.5 ns H Propagation Delay 5.0 1.5 5.0 8.5 1.0 9.0 ns H Propagation Delay 5.0 1.5 5.0 8.5 1.0 9.0 ns H Propagation Delay 5.0 1.5 4.0 7.0 1.0 8.5 ns H Propagation Delay 5.0 1.5 4.5 7.5 1.0 8.5 ns H Propagation Delay 5.0 1.5 4.5 7.5 1.0 8.5 ns H Propagation Delay 5.0 1.5 4.5 7.5 1.0 8.5 ns H Propagation Delay 5.0 1.5 9.7 1.0 8.5 ns Symbol Parameter Typ Units <td< td=""><td>HL</td><td></td><td>5.0</td><td></td><td></td><td>0.5</td><td></td><td>40.5</td><td></td></td<>	HL		5.0			0.5		40.5	
\overline{E} to Z_n 5.0 1.5 6.0 10.0 1.5 11.5 ns 4L Propagation Delay 5.0 1.5 5.0 8.5 1.0 9.0 ns 4L Propagation Delay 5.0 1.5 5.0 8.5 1.0 9.0 ns H Propagation Delay 5.0 1.5 4.0 7.0 1.0 8.5 ns HL Propagation Delay 5.0 1.5 4.5 7.5 1.0 8.5 ns HL Propagation Delay 5.0 1.5 4.5 7.5 1.0 8.5 ns In to Z_n 5.0 1.5 4.5 7.5 1.0 8.5 ns Conditions Conditions Vicc = OPEN Vicc = OPEN Vicc = 5.0V	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		S to Z _n	5.0	2.0	5.5	9.5	2.0	10.5	ns
E to Z _n Propagation Delay 5.0 1.5 5.0 8.5 1.0 9.0 ns HL Propagation Delay 5.0 1.5 5.0 8.5 1.0 9.0 ns LH Propagation Delay 5.0 1.5 4.0 7.0 1.0 8.5 ns HL Propagation Delay 5.0 1.5 4.5 7.5 1.0 8.5 ns HL Propagation Delay 5.0 1.5 4.5 7.5 1.0 8.5 ns bit o Z_n 5.0 1.5 4.5 7.5 1.0 8.5 ns cobe 8: Voltage Range 5.0 is 5.0V ± 0.5V Capacitance 4.5 pF V _{CC} = OPEN Propagation Capacitance So 0.0 pF V _{CC} = OPEN Propagation Capacitance So 0.0 pF V _{CC} = 5.0V V V So So </td <td>$\begin{tabular}{ c c c c c c c c c c c } \hline E \ to \ Z_n & &$</td> <td>LH</td> <td></td> <td>5.0</td> <td>15</td> <td>6.0</td> <td>10.0</td> <td>15</td> <td>11 5</td> <td>ns</td>	$\begin{tabular}{ c c c c c c c c c c c } \hline E \ to \ Z_n & & & & & & & & & & & & & & & & & & &$	LH		5.0	15	6.0	10.0	15	11 5	ns
E to Z _n 5.0 1.5 5.0 8.5 1.0 9.0 ns LH Propagation Delay I _n to Z _n 5.0 1.5 4.0 7.0 1.0 8.5 ns HL Propagation Delay I _n to Z _n 5.0 1.5 4.0 7.0 1.0 8.5 ns HL Propagation Delay I _n to Z _n 5.0 1.5 4.5 7.5 1.0 8.5 ns ote 8: Voltage Range 5.0 is 5.0V ± 0.5V Capacitance 5.0 1.5 pF V _{CC} = OPEN N Input Capacitance 4.5 pF V _{CC} = OPEN PD Power Dissipation Capacitance 50.0 pF V _{CC} = 5.0V	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			0.0	110	0.0	1010			
Propagation Delay 5.0 1.5 4.0 7.0 1.0 8.5 ns HL Propagation Delay 5.0 1.5 4.0 7.0 1.0 8.5 ns HL Propagation Delay 5.0 1.5 4.5 7.5 1.0 8.5 ns ote 8: Voltage Range 5.0 is 5.0V ± 0.5V Capacitance 4.5 p.F V_cc = OPEN Symbol Parameter Typ Units Conditions N Input Capacitance 4.5 p.F V_cc = OPEN PD Power Dissipation Capacitance 50.0 p.F V_{cc} = 5.0V	H Propagation Delay In to Zn 5.0 1.5 4.0 7.0 1.0 8.5 ns HL Propagation Delay In to Zn 5.0 1.5 4.5 7.5 1.0 8.5 ns HL Propagation Delay In to Zn 5.0 1.5 4.5 7.5 1.0 8.5 ns Date 8: Voltage Range 5.0 is 5.0V ± 0.5V Conditions Conditions Vcc = OPEN Vcc = OPEN Propendition Conditions Propendition Conditions Vcc = OPEN Vcc = S.0V	HL		5.0	1.5	5.0	8.5	1.0	9.0	ns
In to Zn 5.0 1.5 4.0 7.0 1.0 8.5 ns HL Propagation Delay In to Zn 5.0 1.5 4.5 7.5 1.0 8.5 ns ote 8: Voltage Range 5.0 is 5.0V ± 0.5V 5.0 1.5 4.5 7.5 1.0 8.5 ns Symbol Parameter Typ Units Conditions N Input Capacitance 4.5 p.F V _{CC} = OPEN PD Power Dissipation Capacitance 50.0 p.F V _{CC} = 5.0V	In to Zn 5.0 1.5 4.0 7.0 1.0 8.5 ns HL Propagation Delay In to Zn 5.0 1.5 4.5 7.5 1.0 8.5 ns obte 8: Voltage Range 5.0 is 5.0V ± 0.5V 5.0 1.5 4.5 7.5 1.0 8.5 ns Symbol Parameter Typ Units Conditions N Input Capacitance 4.5 pF V _{CC} =OPEN PD Power Dissipation Capacitance 50.0 pF V _{CC} = 5.0V									
HL Propagation Delay In to Zn 5.0 1.5 4.5 7.5 1.0 8.5 ns ote 8: Voltage Range 5.0 is 5.0V ± 0.5V Capacitance V V Conditions N Input Capacitance 4.5 pF Vcc=OPEN V V Conditions Conditions Conditions Conditions Conditions Condit	HL Propagation Delay In to Zn 5.0 1.5 4.5 7.5 1.0 8.5 ns ote 8: Voltage Range 5.0 is 5.0V ± 0.5V Capacitance Viscon Conditions Conditions Conditions Ns Input Capacitance 4.5 pF V _{CQ} =OPEN V _{CQ} =OPEN V _{CQ} =OPEN V _{CQ} =S.0V PD Power Dissipation Capacitance 50.0 pF V _{CQ} =S.0V V _{CQ} =S.0V	LH		5.0	1.5	4.0	7.0	1.0	8.5	ns
In to Zn 5.0 1.5 4.5 7.5 1.0 8.5 ns ote 8: Voltage Range 5.0 is 5.0V ± 0.5V Capacitance Viscondation Viscon	In to Zn 5.0 1.5 4.5 7.5 1.0 8.5 ns Stete 8: Voltage Range 5.0 is 5.0V ± 0.5V Conditions Condition	н								
Symbol Parameter Typ Units Conditions N Input Capacitance 4.5 pF V _{CC} = OPEN PD Power Dissipation Capacitance 50.0 pF V _{CC} = 5.0V	Symbol Parameter Typ Units Conditions N Input Capacitance 4.5 pF V _{CC} =OPEN PD Power Dissipation Capacitance 50.0 pF V _{CC} =5.0V			5.0	1.5	4.5	7.5	1.0	8.5	ns
Symbol Parameter Typ Units Conditions Input Capacitance 4.5 pF V _{CC} = OPEN D Power Dissipation Capacitance 50.0 pF V _{CC} = 5.0V	Symbol Parameter Typ Units Conditions Input Capacitance 4.5 pF V _{CC} = OPEN D Power Dissipation Capacitance 50.0 pF V _{CC} = 5.0V	te 8: Voltage	e Range 5.0 is 5.0V ± 0.5V							
Symbol Parameter Typ Units Conditions Input Capacitance 4.5 pF V _{CC} = OPEN D Power Dissipation Capacitance 50.0 pF V _{CC} = 5.0V	Symbol Parameter Typ Units Conditions Input Capacitance 4.5 pF V _{CC} = OPEN D Power Dissipation Capacitance 50.0 pF V _{CC} = 5.0V	apaci	tance					a Th		
Input Capacitance 4.5 pF V _{CC} = OPEN p Power Dissipation Capacitance 50.0 pF V _{CC} = 5.0V	Input Capacitance 4.5 pF V _{CC} = OPEN p Power Dissipation Capacitance 50.0 pF V _{CC} = 5.0V				Тур	U	inits		Conditions	
Power Dissipation Capacitance 50.0 pF V _{CC} = 5.0V	Power Dissipation Capacitance $50.0 \text{ pF} \text{ V}_{CC} = 5.0 \text{ V}$	N	Input Capacitance			Sec.			-	
COL	COL			nce		7922	pE V	$c_0 = 5.0V$		
			1							
			1							
			1							


74AC157 • 74ACT157



74AC157 • 74ACT157

9