

February 1992 Revised June 2001

74LVQ32

Low Voltage Quad 2-Input OR Gate

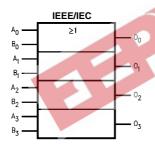
General Description

The LVQ32 contains four 2-input OR gates.

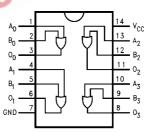
Features

- Ideal for low power/low noise 3.3V applications
- Guaranteed simultaneous switching noise level and dynamic threshold performance

3.


- Guaranteed pin-to-pin skew AC performance
- \blacksquare Guaranteed incident wave switching into 75 Ω

Ordering Code:


Order Number	Package Number	Package Description
74LVQ32SC	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
74LVQ32SJ	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code

Logic Symbol

Connection Diagram

Pin Descriptions

Pin Names	Description			
A _n , B _n	Inputs			
O _n	Outputs			

Absolute Maximum Ratings(Note 1)

Supply Voltage (V_{CC}) -0.5V to +7.0V DC Input Diode Current (I_{IK})

 $V_1 = -0.5V$ -20 mA $V_I = V_{CC} + 0.5V$ +20 mA DC Input Voltage (V_I) -0.5V to $V_{CC} + 0.5V$

DC Output Diode Current (I_{OK})

 $V_{O} = -0.5V$ -20 mA $V_O = V_{CC} + 0.5V$ +20 mA $-0.5 \mbox{V}$ to $\mbox{V}_{\mbox{CC}} + 0.5 \mbox{V}$

DC Output Voltage (V_O) DC Output Source

or Sink Current (I_O) ±50 mA

DC V_{CC} or Ground Current

 $(I_{CC} \text{ or } I_{GND})$ ±200 mA Storage Temperature (T_{STG}) -65°C to +150°C

DC Latch-Up Source or

Recommended Operating Conditions (Note 2)

Supply Voltage (V_{CC})

LVQ 2.0V to 3.6V Input Voltage (V_I) 0V to V_{CC} 0V to $V_{\mbox{\footnotesize CC}}$ Output Voltage (V_O)

Operating Temperature (T_A)

74LVQ -40°C to +85°C

Minimum Input Edge Rate (ΔV/Δt)

 $V_{\mbox{\scriptsize IN}}$ from 0.8V to 2.0V

V_{CC} @ 3.0V 125 mV/ns

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

DC Latch-Up Source or		Note 2: Unused inputs must be held HIGH or LOW. They may not float.						
Sink Current		±100 mA						
ectrical Charact	eristics			2 1 3ª C	10			
Parameter	V _{CC} (V)	T _A = -	$T_A = +25^{\circ}C$ $T_A = -40^{\circ}C$ to $+85^{\circ}C$			Conditions		
Minimum High Level Input Voltage	3.0	1.5	2.0	2.0	V	V _{OUT} = 0.1V or V _{CC} – 0.1V		
Maximum Low Level Input Voltage	3.0	1.5	0.8	0.8	V	V _{OUT} = 0.1V or V _{CC} - 0.1V		
Minimum High Level	3.0	2.99	2.9	2.9	V	I _{OUT} = -50 μA		
Output Voltage	3.0		2.58	2.48	V	V _{IN} = V _{IL} or V _{IH} (Note 3)		
						$I_{OH} = -12 \text{ mA}$		
Maximum Low Level	3.0	0.002	0.1	0.1	V	I _{OUT} = 50 μA		
Output Voltage	3.0		0.36	0.44	٧	$V_{IN} = V_{IL} \text{ or } V_{IH} \text{ (Note 3)}$ $I_{OL} = 12 \text{ mA}$		
Maximum Input Leakage Current	3.6		±0.1	±1.0	μА	$V_I = V_{CC},$ GND		
Minimum Dynamic	3.6			36	mA	V _{OLD} = 0.8V Max (Note 5)		
Output Current (Note 4)	3.6			-25	mA	V _{OHD} = 2.0V Min (Note 5)		
Maximum Quiescent Supply Current	3.6		2.0	20.0	μА	V _{IN} = V _{CC} or GND		
Quiet Output Maximum Dynamic V _{OL}	3.3	0.5	0.8		V	(Note 6)(Note 7)		
Quiet Output Minimum Dynamic V _{OL}	3.3	-0.5	-0.8		٧	(Note 6)(Note 7)		
Maximum High Level Dynamic Input Voltage	3.3	1.9	2.0		٧	(Note 6)(Note 8)		
Maximum Low Level Dynamic Input Voltage	3.3	1.8	0.8		٧	(Note 6)(Note 8)		
	Parameter Minimum High Level Input Voltage Maximum Low Level Input Voltage Minimum High Level Output Voltage Minimum High Level Output Voltage Maximum Low Level Output Voltage Maximum Low Level Output Voltage Maximum Input Leakage Current Minimum Dynamic Output Current (Note 4) Maximum Quiescent Supply Current Quiet Output Maximum Dynamic VoL Quiet Output Minimum Dynamic VoL Quiet Output Minimum Dynamic VoL Maximum High Level Dynamic Input Voltage Maximum Low Level	Parameter Parameter (V) Minimum High Level Input Voltage Maximum Low Level Output Voltage 3.0 Maximum Low Level 3.0 Maximum Input Leakage Current Minimum Dynamic Output Current (Note 4) 3.6 Maximum Quiescent Supply Current Quiet Output Maximum Dynamic Vol Quiet Output Minimum Dynamic Vol Quiet Output Minimum Dynamic Vol Maximum High Level Dynamic Input Voltage Maximum Low Level 3.3	Description Parameter Parameter Voc	Current ±100 mA ectrical Characteristics Parameter V _{CC} (V) T _A = +25°C Minimum High Level 3.0 1.5 2.0 Minimum High Level 3.0 1.5 0.8 Input Voltage 3.0 2.99 2.9 Minimum High Level 3.0 2.99 2.9 Output Voltage 3.0 0.002 0.1 Maximum Low Level 3.0 0.002 0.1 Output Voltage 3.0 0.36 ±0.1 Maximum Input Leakage Current 3.6 ±0.1 ±0.1 Minimum Dynamic 3.6 ±0.1 ±0.1 Maximum Quiescent Supply Current 3.6 2.0 2.0 Quiet Output Maximum Dynamic VoL 3.3 0.5 0.8 Maximum High Level Dynamic Input Voltage 3.3 1.9 2.0 Maximum Low Level 3.2 1.8 0.9	Parameter	Current ±100 mA Parameter V _{CC} (V) T _A = +25°C (T _A = -40°C to +85°C (Units) Minimum High Level Input Voltage 3.0 1.5 2.0 2.0 V Maximum Low Level Input Voltage 3.0 1.5 0.8 0.8 V Input Voltage 3.0 2.99 2.9 2.9 V Output Voltage 3.0 0.002 0.1 0.1 V Maximum Low Level Output Voltage 3.0 0.002 0.1 0.1 V Maximum Input Leakage Current 3.6 ±0.1 ±1.0 μA Minimum Dynamic Output Current (Note 4) 3.6 2.0 20.0 μA Maximum Quiescent Supply Current 3.6 2.0 20.0 μA Quiet Output Maximum Dynamic Vol. Minimum Dynamic Vol. Minimum Dynamic Vol. Minimum Dynamic Input Voltage 3.3 1.9 2.0 V Maximum Low Level Dynamic Input Voltage 3.3 1.9 2.0 V		

Note 3: All outputs loaded; thresholds on input associated with output under test.

Note 4: Maximum test duration 2.0 ms, one output loaded at a time.

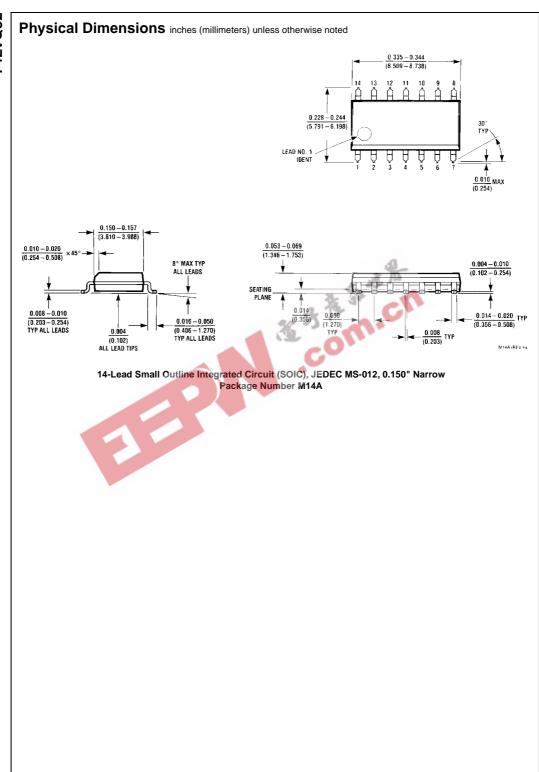
Note 5: Incident wave switching on transmission lines with impedances as low as 75Ω for commercial temperature range is guaranteed for 74LVQ.

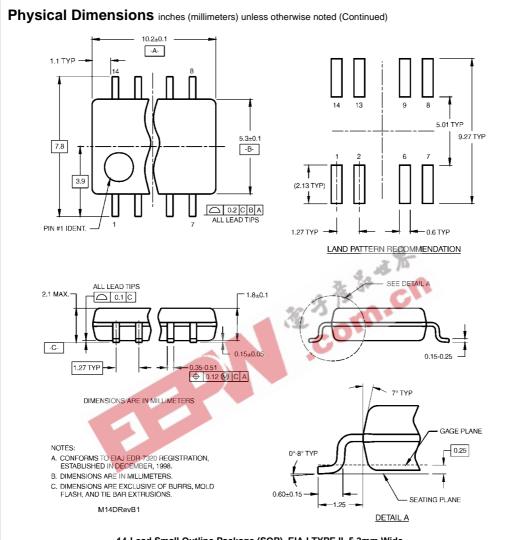
Note 6: Worst case package

Note 7: Max number of outputs defined as (n). Data inputs are driven 0V to 3.3V; one output at GND.

Note 8: Max number of Data Inputs (n) switching. (n-1) inputs switching 0V to 3.3V. Input-under-test switching: 3.3V to threshold (V_{ILD}) , 0V to threshold (V_{IHD}) , f = 1 MHz.

AC Electrical Characteristics


Symbol Parameter		v _{cc}	$T_A = +25$ °C $C_L = 50 \text{ pF}$			$T_A = -40$ °C to +85°C $C_L = 50$ pF		Units
		(V)	Min	Тур	Max	Min	Max	
t _{PLH}	Propagation Delay	2.7	1.5	8.4	12.7	1.5	14.0	
		3.3 ± 0.3	1.5	7.0	9.0	1.5	10.0	ns
t _{PHL}	Propagation Delay	2.7	1.5	8.4	12.0	1.0	13.0	
		3.3 ± 0.3	1.5	7.0	8.5	1.5	9.0	ns
t _{OSHL,}	Output to Output Skew	2.7		1.0	1.5		1.5	ns
toslh	(Note 9)	3.3 ± 0.3		1.0	1.5		1.5	115


Note 9: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}). Parameter guaranteed by design.

Capacitance

Symbol	Parameter	Тур	Units	Conditions
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = Open
C _{PD} (Note 10)	Power Dissipation Capacitance	17	pF	$V_{CC} = 3.3V$
Note 10: C _{PD} is measu	ured at 10 MHz.	3	CON	n.cn

3

14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide Package Number M14D

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com