

SEMICONDUCTOR

74VHC157 Quad 2-Input Multiplexer

General Description

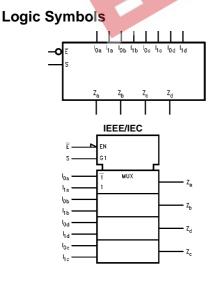
The VHC157 is an advanced high speed CMOS Quad 2-Channel Multiplexer fabricated with silicon gate CMOS technology. It achieves the high speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation.

It consists of four 2-input digital multiplexers with common select and enable inputs. When the ENABLE input is held "H" level, selection of data is inhibited and all the outputs become "L" level. The SELECT decoding determines whether the I_{0x} or I_{1x} inputs get routed to their corresponding outputs.

An Input protection circuit ensures that 0V to 7V can be applied to the input pins without regard to the supply volt-

November 1992 Revised April 1999

age. This device can be used to interface 5V to 3V systems and on two supply systems such as battery back up. This circuit prevents device destruction due to mismatched supply and input voltages.

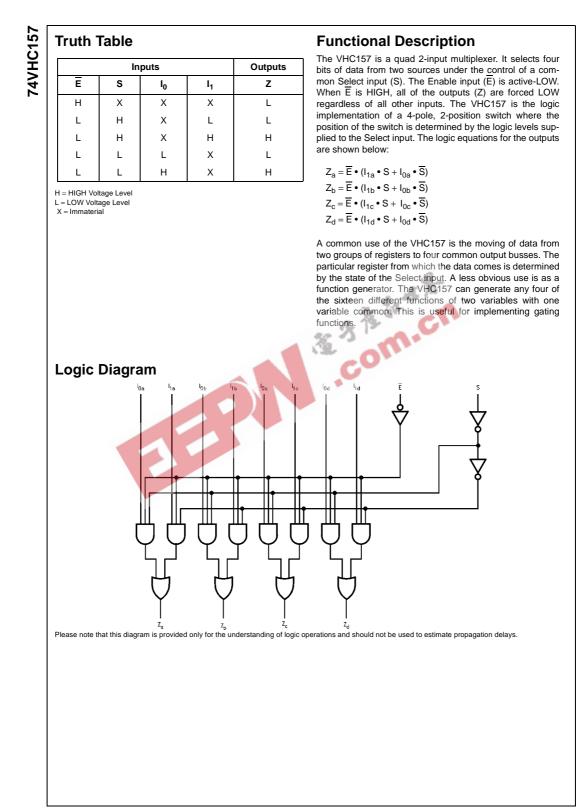

Features

- High Speed: $t_{PD} = 4.1$ ns (typ) at $V_{CC} = 5V$
- \blacksquare Low power dissipation: I_{CC} = 4 μA (max.) at T_A = 25°C
- \blacksquare High noise immunity: $V_{NIH} = V_{NIL} = 28\%~V_{CC}$ (min.)
- Power down protection is provided on all inputs
- Low noise: V_{OLP} = 0.8V (max.)
- Pin and function compatible with 74HC157

Ordering Code:

_		1			
Order Number	Package Number				Package Description
74VHC157M	M16A	16-Lead Small	Outline	e Integ	grated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
74VHC157SJ	M16D	16-Lead Small	Outline	e Pack	kage (SOP), EIAJ TYPE II, 5.3mm Wide
74VHC157MTC	MTC16	16-Lead Thin S	Shrink S	Small	Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74VHC157N	N16E	16-Lead Plasti	c Dual-	In-Lin	e Package (PDIP), JEDEC MS-001, 0.300" Wide

Surface mount packages are also available on Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.


Connection Diagram

s —	1	\bigcirc	16	_ v_
1 _{0a} —	2		15	— Ē
1 _{1a} —	3		14	- I ₀ ,
Z _a —	4		13	- 4.
ы –	5		12	— z _c
ч _ь —	6		11	- I ₀ ,
z _ь —	7		10	- 4.
GND —	8		9	— z _d

Pin Descriptions

Pin Names	Description
I _{0a} –I _{0d}	Source 0 Data Inputs
I _{1a} –I _{1d}	Source 1 Data Inputs
Ē	Enable Input
S	Select Input
Z _a –Z _d	Outputs

© 1999 Fairchild Semiconductor Corporation DS011536.prf

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Voltage (V _{IN})	-0.5V to +7.0V
DC Output Voltage (V _{OUT})	$-0.5 V$ to $V_{CC} + 0.5 V$
Input Diode Current (I _{IK})	–20 mA
Output Diode Current (I _{OK})	±20 mA
DC Output Current (I _{OUT})	±25 mA
DC V _{CC} /GND Current (I _{CC})	±50 mA
Storage Temperature (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Lead Temperature (T _L)	
(Soldering, 10 seconds)	260°C

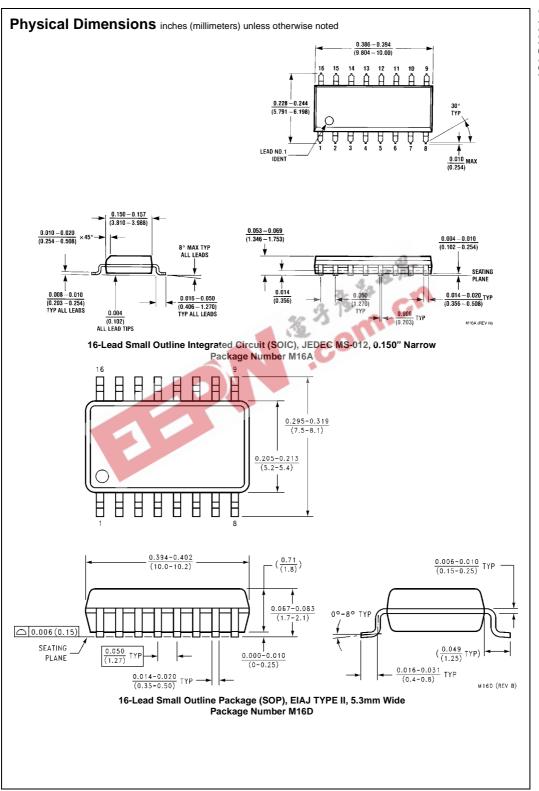
Recommended Operating Conditions (Note 2)

Supply Voltage (V _{CC})	2.0V to +5.5V
Input Voltage (V _{IN})	0V to +5.5V
Output Voltage (V _{OUT})	0V to V _{CC}
Operating Temperature (T _{OPR})	$-40^{\circ}C$ to $+85^{\circ}C$
Input Rise and Fall Time (t_r, t_f)	
$V_{CC}=3.3V\pm0.3V$	0 ~ 100 ns/V
$V_{CC}=5.0V\pm0.5V$	0 ~ 20 ns/V
late 4. Alexalute Meximum Detines are us	luce housed which the douise

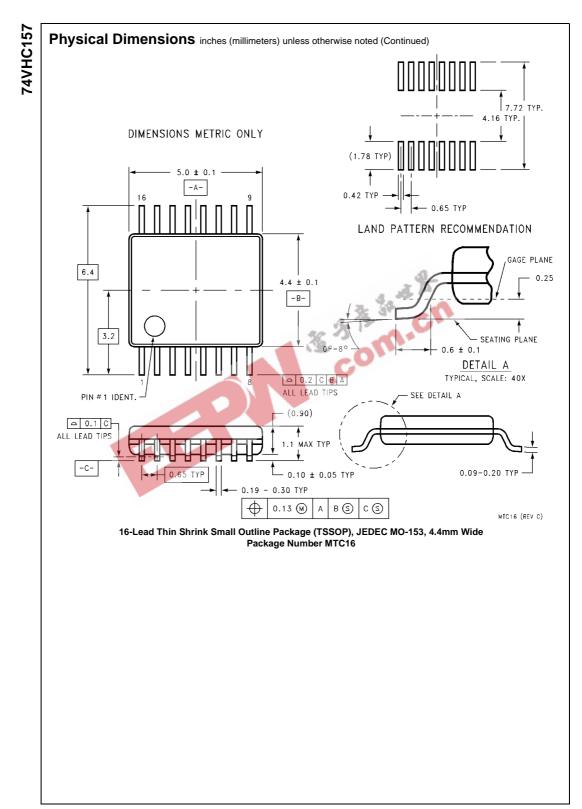
Note 1: Absolute Maximum Ratings are values beyond which the device may be damaged or have its useful life impaired. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside databook specifications.

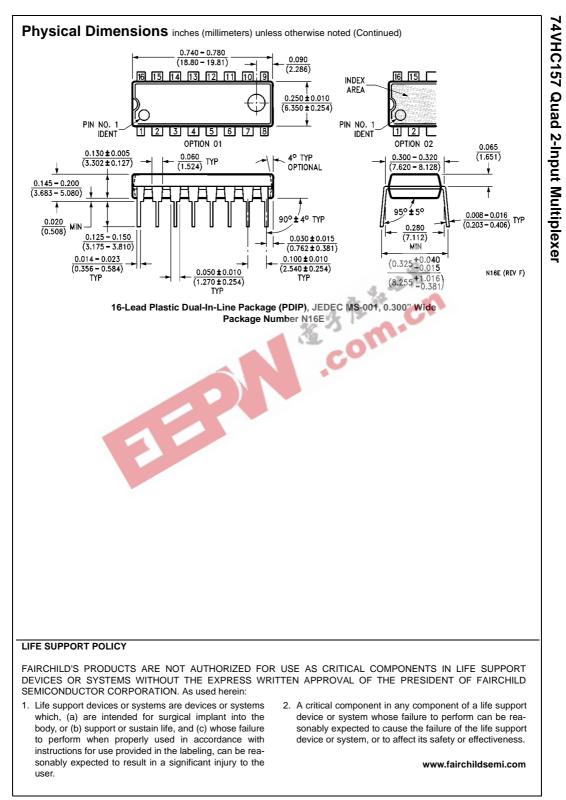
Note 2: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics


Symbol	Parameter	V _{CC}	Т	A = 25°C		T _A = -40°C to +85°	C Units	Cor	nditions
Symbol	Falameter	(V)	Min	Тур	Max	Min 🚽 Max		0	luluons
V _{IH}	HIGH Level	2.0	1.50			1.50			
	Input Voltage	3.0 - 5.5	0.7 V _{CC}			0.7 V _{CC}	C .		
V _{IL}	LOW Level	2.0			0.50	0.50	V		
	Input Voltage	3.0 - 5.5			0.3 V _{CC}	0.3 V _C			
V _{OH}	HIGH Level	2.0	1.9	2.0		1.9		$V_{IN} = V_{IH}$	$I_{OH} = -50 \ \mu A$
	Output Voltage	3.0	2.9	3.0		2.9	V	or V _{IL}	
		4.5	4.4	4.5		4.4			
		3.0	2.58			2.48	V		$I_{OH} = -4 \text{ mA}$
		4.5	3.94			3.80	v		$I_{OH} = -8 \text{ mA}$
V _{OL}	LOW Level	2.0		0.0	0.1	0.1		$V_{IN} = V_{IH}$	$I_{OL} = 50 \ \mu A$
	Output Voltage	3.0		0.0	0.1	0.1	V	or V _{IL}	
		4.5		0.0	0.1	0.1			
		3.0			0.36	0.44	V		$I_{OL} = 4 \text{ mA}$
		4.5			0.36	0.44	v		$I_{OL} = 8 \text{ mA}$
I _{IN}	Input Leakage Current	0 - 5.5			±0.1	±1.0	μA	V _{IN} = 5.5\	/ or GND
I _{CC}	Quiescent Supply Current	5.5			4.0	40.0	μA	$V_{IN} = V_{CC}$	or GND

Noise Characteristics


Symbol	Parameter	V _{cc}	T _A =	25°C	Units	Conditions
Symbol	Falameter	(V)	Тур	Limits	Units	Conditions
V _{OLP}	Quiet Output Maximum	5.0	0.3	0.8	V	C _L = 50 pF
(Note 3)	Dynamic V _{OL}					
V _{OLV}	Quiet Output Minimum	5.0	-0.3	-0.8	V	C _L = 50 pF
(Note 3)	Dynamic V _{OL}					
V _{IHD}	Minimum HIGH Level	5.0		3.5	V	C _L = 50 pF
(Note 3)	Dynamic Input Voltage					
V _{ILD}	Maximum LOW Level	5.0		1.5	V	C _L = 50 pF
(Note 3)	Dynamic Input Voltage					


Note 3: Parameter guaranteed by design.

$ \begin{array}{ c c c c c c } \hline \mbox{Number large} \begin{tabular}{ c c c c c } \hline \mbox{Number large} \begin{tabular}{ c c c c c c c } \hline \mbox{Number large} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	0	Descention	v _{cc}		$T_A=25^\circ C$		$T_A = -40^{\circ}$	C to +85°C	Unite	O an allelan
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Symbol	Parameter	(V)	Min	Тур	Max	Min	Max	Units	Condition
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	t _{PLH}	Propagation Delay	3.3 ± 0.3		6.2	9.7	1.0	11.5	ns	C _L = 15 pF
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	t _{PHL}	In to Zn			8.7	13.2	1.0	15.0		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			5.0 ± 0.5						ns	
$ t_{\text{PHL}} \begin{array}{ c c c c c c c c } S \ \text{to} \ Z_n & \hline & \hline & \hline & 10.9 & 16.7 & 1.0 & 19.0 & ns & \hline & C_L = 50 \ \text{pF} \\ \hline \hline & 5.0 \pm 0.5 & 5.3 & 8.1 & 1.0 & 9.5 & ns & \hline & C_L = 50 \ \text{pF} \\ \hline & 6.8 & 10.1 & 1.0 & 11.5 & ns & \hline & C_L = 50 \ \text{pF} \\ \hline & C_L = 50 \ \text{pF}$										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			3.3 ± 0.3						ns	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	t _{PHL}	S to Z _n								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			5.0 ± 0.5						ns	
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Press agestion Delay	22402							-
$ \frac{5.0 \pm 0.5}{C_{\rm IN}} \frac{5.6 \pm 0.6}{7.1 + 10.6} \frac{5.6 \pm 0.6}{1.0 + 10.0} + 100 + $			3.3 ± 0.3						ns	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	PHL	E to Z _n	E 0 0 E							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			5.0 ± 0.5						ns	
CPD Power Dissipation 20 pF (Note 4) Capacitance Capacitance Note 4: CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Ave operating current can be obtained by the equation: ICC (opr.) = CPD * VCC * fIN + ICC. Image: Comparison of the internal equivalent capacitance which is calculated from the operating current consumption without load. Ave operating current can be obtained by the equation: ICC (opr.) = CPD * VCC * fIN + ICC.	0	Innut Consoltance					1.0		~F	
Capacitance Note 4: C _{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Aver operating current can be obtained by the equation: I _{CC} (opr.) = C _{PD} * V _{CC} * f _{IN} + I _{CC} .						10		10		
Note 4: C _{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Aw operating current can be obtained by the equation: I _{CC} (opr.) = C _{PD} * V _{CC} * f _{IN} + I _{CC} .	CPD									(14018 4)
		3			N	ر م د	on	1.0		

74VHC157

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.