
SCAS014C - AUGUST 1987 - REVISED APRIL 1996

 Flow-Through Architecture Optimizes PCB Layout 	D, N, OR PW PACKAGE (TOP VIEW)				
 Center-Pin V_{CC} and GND Configurations Minimize High-Speed Switching Noise 					
 EPIC[™] (Enhanced-Performance Implanted CMOS) 1-µm Process 	1Y 2 15 2A 2Y 3 14 2B GND 4 13 Vcc				
 500-mA Typical Latch-Up Immunity at 125°C 	GND 4 13 V _{CC} GND 5 12 V _{CC} 3Y 6 11 3A				
 Package Options Include Plastic Small-Outline (D) and Thin Shrink Small-Outline (PW) Packages, and 	4Y [7 10] 3B 4B [8 9] 4A				
Standard Plastic 300-mil DIPs (N)					

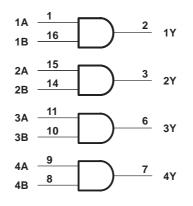
description

This device contains four independent 2-input AND gates. It performs the Boolean function $Y = A \bullet B$ or $Y = \overline{A} + \overline{B}$ in positive logic.

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC is a trademark of Texas Instruments Incorporated.


PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1996, Texas Instruments Incorporated

SCAS014C - AUGUST 1987 - REVISED APRIL 1996

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Storage temperature range, Tstg

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils, except for the N package, which has a trace length of zero.

SCAS014C - AUGUST 1987 - REVISED APRIL 1996

			MIN	NOM	MAX	UNI	
VCC	Supply voltage		3	5	5.5	V	
		V _{CC} = 3 V	2.1				
VIH	High-level input voltage	V _{CC} = 4.5 V	3.15			V	
		V _{CC} = 5.5 V	3.85				
		$V_{CC} = 3 V$			0.9		
VIL	Low-level input voltage	$V_{CC} = 4.5 V$			1.35	V	
		V _{CC} = 5.5 V			1.65		
VI	Input voltage	-	0		VCC	V	
Vo	Output voltage		0		VCC	V	
		V _{CC} = 3 V			-4		
ЮН	High-level output current	V _{CC} = 4.5 V			-24	mA	
		V _{CC} = 5.5 V			-24		
		V _{CC} = 3 V			12		
IOL	Low-level output current	$V_{CC} = 4.5 V$			24	mA	
		V _{CC} = 5.5 V			24		
$\Delta t / \Delta v$	Input transition rise or fall rate	a 34 🔥	0		10	ns/\	
TA	Operating free-air temperature	23	-40		85	°C	

recommended operating conditions

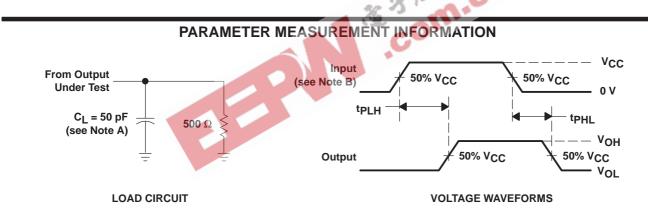
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	Vac	T _A = 25°C			MIN	MAX	UNIT
PARAMETER	TEST CONDITIONS	Vcc	MIN	TYP	MAX		WAA	UNIT
		3 V	2.9			2.9		
	I _{OH} = -50 μA	4.5 V	4.4			4.4		
		5.5 V	5.4			5.4		
VOH	$I_{OH} = -4 \text{ mA}$	3 V	2.58			2.48		V
		4.5 V	3.94			3.8		
	$I_{OH} = -24 \text{ mA}$	5.5 V	4.94			4.8		
	$I_{OH} = -75 \text{ mA}^{\dagger}$	5.5 V				3.85		
		3 V			0.1		0.1	
	I _{OL} = 50 μA	4.5 V			0.1		0.1	
					0.1		0.1	
VOL	I _{OL} = 12 mA	3 V			0.36		0.44	V
	lot = 24 mA	4.5 V			0.36		0.44	
	$I_{OL} = 24 \text{ mA}$	5.5 V			0.36		0.44	
	$I_{OL} = 75 \text{ mA}^{\dagger}$	5.5 V					1.65	
lj	$V_I = V_{CC}$ or GND	5.5 V			±0.1		±1	μA
Icc	$V_{I} = V_{CC} \text{ or } GND, \qquad I_{O} = 0$	5.5 V			4		40	μA
Ci	$V_I = V_{CC}$ or GND	5 V		3.5				pF

[†] Not more than one output should be tested at a time, and the duration of the test should not exceed 10 ms.

SCAS014C - AUGUST 1987 - REVISED APRIL 1996

switching characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)


PARAMETER	FROM	ТО	T _A = 25°C		MIN	MINI	MAX	UNIT
PARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	IVIIIN	IVIAA	UNIT
^t PLH	A or B	Y	1.5	6.3	9	1.5	10.2	20
^t PHL	AUB		1.5	5.6	7.8	1.5	8.6	ns

switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	ТО	T _A = 25°C		MIN	МАХ	UNIT	
PARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	IVIIIN	IVIAA	UNIT
^t PLH	A or B	V	1.5	4.3	6.2	1.5	6.9	
^t PHL	AUB	T	1.5	5.6	5.9	1.5	6.5	ns

operating characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

PARAMETER			TEST CONDITIONS		
C _{pd}	Power dissipation capacitance per gate	CL = 50 pF,	f = 1 MHz	29	pF

NOTES: A. CL includes probe and jig capacitance.

B. Input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_O = 50 Ω , t_f = 3 ns, t_f = 3 ns.

C. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. Tt's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated