INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT4053 Triple 2-channel analog multiplexer/demultiplexer

Product specification
File under Integrated Circuits, IC06

December 1990

Triple 2-channel analog multiplexer/demultiplexer

74HC/HCT4053

FEATURES

• Low "ON" resistance:

80 Ω (typ.) at $V_{CC} - V_{EE} = 4.5 \text{ V}$ 70 Ω (typ.) at $V_{CC} - V_{EE} = 6.0 \text{ V}$

60 Ω (typ.) at $V_{CC} - V_{EE} = 9.0 \text{ V}$

 Logic level translation: to enable 5 V logic to communicate with ± 5 V analog signals

• Typical "break before make" built in

· Output capability: non-standard

I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT4053 are high-speed Si-gate CMOS devices and are pin compatible with the "4053" of the "4000B" series. They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT4053 are triple 2-channel analog multiplexers/demultiplexers with a common enable input (\overline{E}) . Each multiplexer/demultiplexer has two independent inputs/outputs (nY $_0$ and nY $_1$), a common input/output (nZ) and three digital select inputs (S $_1$ to S $_3$).

With \overline{E} LOW, one of the two switches is selected (low impedance ON-state) by S_1 to S_3 . With \overline{E} HIGH, all switches are in the high impedance OFF-state, independent of S_1 to S_3 .

 V_{CC} and GND are the supply voltage pins for the digital control inputs (S₁, to S₃, and $\overline{E})$. The V_{CC} to GND ranges are 2.0 to 10.0 V for HC and 4.5 to 5.5 V for HCT. The analog inputs/outputs (nY $_0$ and nY $_1$, and nZ) can swing between V_{CC} as a positive limit and V_{EE} as a negative limit. $V_{CC}-V_{EE}$ may not exceed 10.0 V.

For operation as a digital multiplexer/demultiplexer, V_{EE} is connected to GND (typically ground).

QUICK REFERENCE DATA

 $V_{EE} = GND = 0 \text{ V}; T_{amb} = 25 \,^{\circ}\text{C}; t_r = t_f = 6 \,^{\circ}\text{NS}$

SYMBOL	PARAMETER	CONDITIONS	TYP	ICAL	UNIT
STWIBUL	PARAMETER	CONDITIONS	нс	нст	UNII
t _{PZH} / t _{PZL}	turn "ON" time	$C_L = 15 \text{ pF}; R_L = 1 \text{ k}\Omega; V_{CC} = 5 \text{ V}$			
	Ē to V _{OS}		17	23	ns
	S _n to V _{OS}		21	21	ns
t _{PHZ} / t _{PLZ}	turn "OFF" time				
	Ē to V _{OS}		18	20	ns
	S _n to V _{OS}		17	19	ns
C _I	input capacitance		3.5	3.5	pF
C _{PD}	power dissipation capacitance per switch	notes 1 and 2	36	36	pF
Cs	max. switch capacitance				
	independent (Y)		5	5	pF
	common (Z)		8	8	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum \{(C_L + C_S) \times V_{CC}^2 \times f_o\} \text{ where: }$$

f_i = input frequency in MHz; f_o = output frequency in MHz

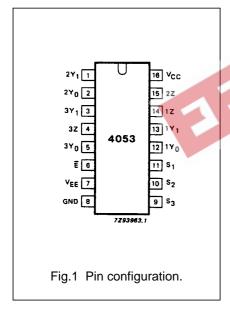
$$\sum \{(C_L + C_S) \times V_{CC}^2 \times f_0\} = \text{sum of outputs}$$

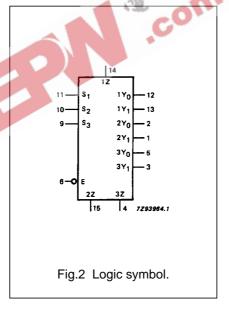
C_L = output load capacitance in pF; C_S = max. switch capacitance in pF

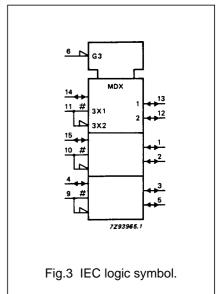
V_{CC} = supply voltage in V

2. For HC the condition is $V_I = GND$ to V_{CC}

For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5 \text{ V}$


74HC/HCT4053


ORDERING INFORMATION


See "74HC/HCT/HCU/HCMOS Logic Package Information".

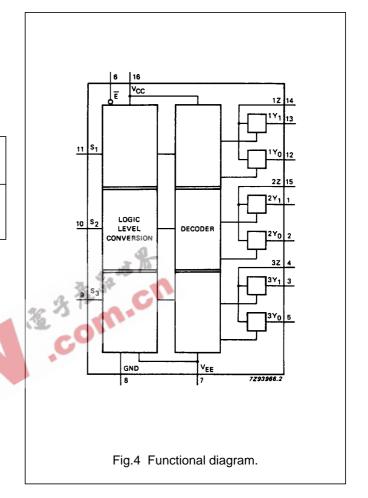
PIN DESCRIPTION

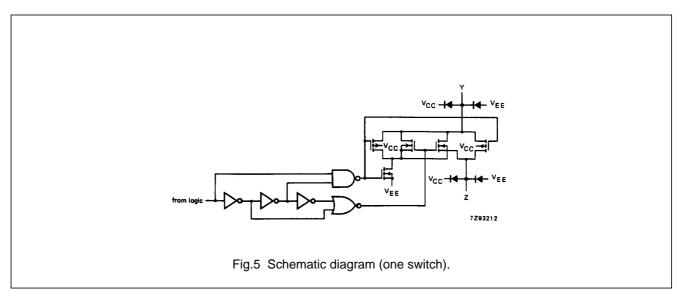
PIN NO.	SYMBOL	NAME AND FUNCTION
2, 1	2Y ₀ to, 2Y ₁	independent inputs/outputs
5, 3	3Y ₀ to, 3Y ₁	independent inputs/outputs
6	Ē	enable input (active LOW)
7	V _{EE}	negative supply voltage
8	GND	ground (0 V)
11, 10, 9	S ₁ to S ₃	select inputs
12, 13	1Y ₀ , 1Y ₁	independent inputs/outputs
14, 15, 4	1Z to 3Z	common inputs/outputs
16	V _{CC}	positive supply voltage

74HC/HCT4053

APPLICATIONS

- Analog multiplexing and demultiplexing
- Digital multiplexing and demultiplexing
- Signal gating


FUNCTION TABLE


INPU	JTS	CHANNEL ON
Ē	S _n	CHANNEL ON
L	L	$nY_0 - nZ$
L	Н	nY1 – nZ
Н	X	none

Note

H = HIGH voltage level
 L = LOW voltage level

X = don't care

Triple 2-channel analog multiplexer/demultiplexer

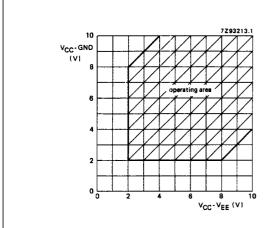
74HC/HCT4053

RATINGS

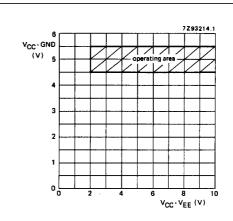
Limiting values in accordance with the Absolute Maximum System (IEC 134) Voltages are referenced to $V_{EE} = GND$ (ground = 0 V)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
V _{CC}	DC supply voltage	-0.5	+11.0	V	
±I _{IK}	DC digital input diode current		20	mA	for $V_I < -0.5 \text{ V}$ or $V_I > V_{CC} + 0.5 \text{ V}$
±I _{SK}	DC switch diode current		20	mA	for $V_S < -0.5 \text{ V}$ or $V_S > V_{CC} + 0.5 \text{ V}$
±I _S	DC switch current		25	mA	for $-0.5 \text{ V} < \text{V}_{\text{S}} < \text{V}_{\text{CC}} + 0.5 \text{ V}$
±I _{EE}	DC V _{EE} current		20	mA	
±I _{CC} ; ±I _{GND}	DC V _{CC} or GND current		50	mA	
T _{stg}	storage temperature range	-65	+150	°C	
P _{tot}	power dissipation per package				for temperature range: -40 to + 125 °C 74HC/HCT
	plastic DIL		750	mW	above + 70 °C: derate linearly with 12 mW/K
	plastic mini-pack (SO)		500	mW 🛴	above + 70 °C: derate linearly with 8 mW/K
Ps	power dissipation per switch		100	mW	M.

Note to ratings


To avoid drawing V_{CC} current out of terminals nZ, when switch current flows in terminals nY_n, the voltage drop across the bidirectional switch must not exceed 0.4 V. If the switch current flows into terminals nZ, no V_{CC} current will flow out of terminals nY_n. In this case there is no limit for the voltage drop across the switch, but the voltages at nY_n and nZ may not exceed V_{CC} or V_{EE} .

RECOMMENDED OPERATING CONDITIONS


SYMBOL	PARAMETER		74HC			74H0	СТ	UNIT	CONDITIONS
STINIBUL	PARAWEIER	min.	typ.	max.	min.	typ.	max.	UNIT	CONDITIONS
V _{CC}	DC supply voltage V _{CC} -GND	2.0	5.0	10.0	4.5	5.0	5.5	V	see Figs 6 and 7
V _{CC}	DC supply voltage V _{CC} -V _{EE}	2.0	5.0	10.0	2.0	5.0	10.0	V	see Figs 6 and 7
VI	DC input voltage range	GND		V_{CC}	GND		V _{CC}	V	
Vs	DC switch voltage range	V_{EE}		V_{CC}	V _{EE}		V _{CC}	V	
T _{amb}	operating ambient temperature range	-40		+85	-40		+85	°C	see DC and AC
T _{amb}	operating ambient temperature range			+125	-40		+125	°C	CHARACTERISTICS
t _r , t _f	input rise and fall times		6.0	1000 500 400 250		6.0	500	ns	$V_{CC} = 2.0 \text{ V}$ $V_{CC} = 4.5 \text{ V}$ $V_{CC} = 6.0 \text{ V}$ $V_{CC} = 10.0 \text{ V}$

Triple 2-channel analog multiplexer/demultiplexer

74HC/HCT4053

Guaranteed operating area as a function of Fig.6 the supply voltages for 74HC4053.

Guaranteed operating area as a function of the supply voltages for 74HCT4053.

					TEST CONDITIONS									
SYMBOL	SYMBOL PARAMETER		+ 25		74HC/ -40 1	HCT to +85	-40 to	o +125	UNIT	V _{CC} (V)	V _{EE}	Ι _S (μΑ)	V _{is}	Vı
		min.	typ.	max.	min.	max.	min.	max.						
R _{ON}	ON resistance (peak)		- 100 90 70	- 180 160 130		- 225 200 165		- 270 240 195	Ω Ω Ω	2.0 4.5 6.0 4.5	0 0 0 -4.5	100 1000 1000 1000	V _{CC} to V _{EE}	V _{IH} or V _{IL}
R _{ON}	ON resistance (rail)		150 80 70 60	- 140 120 105		- 175 150 130		- 210 180 160	Ω Ω Ω	2.0 4.5 6.0 4.5	0 0 0 -4.5	100 1000 1000 1000	V _{EE}	V _{IH} or V _{IL}
R _{ON}	ON resistance (rail)		150 90 80 65	- 160 140 120		- 200 175 150		- 240 210 180	Ω Ω Ω	2.0 4.5 6.0 4.5	0 0 0 -4.5	100 1000 1000 1000	V _{CC}	V _{IH} or V _{IL}
ΔR _{ON}	maximum ΔON resistance between any two channels		- 9 8 6						Ω Ω Ω	2.0 4.5 6.0 4.5	0 0 0 -4.5		V _{CC} to V _{EE}	V _{IH} or V _{IL}

Notes to the characteristics

- 1. At supply voltages (V_{CC} V_{EE}) approaching 2.0 V the analog switch ON-resistance becomes extremely non-linear. Therefore it is recommended that these devices be used to transmit digital signals only, when using these supply voltages.
- 2. For test circuit measuring R_{ON} see Fig.8.

Triple 2-channel analog multiplexer/demultiplexer

74HC/HCT4053

DC CHARACTERISTICS FOR 74HC

Voltages are referenced to GND (ground = 0 V)

		T _{amb} (°C)								TEST CONDITIONS			
					74H	С			UNIT				
SYMBOL	PARAMETER	+25			-40 1	-40 to +85		-40 to +125		V _{CC}	V _{EE}	VI	OTHER
		min.	typ.	max.	min.	max.	min.	max.					
V _{IH}	HIGH level input voltage	1.5 3.15 4.2 6.3	1.2 2.4 3.2 4.7		1.5 3.15 4.2 6.3		1.5 3.15 4.2 6.3		V	2.0 4.5 6.0 9.0			
V _{IL}	LOW level input voltage		0.8 2.1 2.8 4.3	0.5 1.35 1.8 2.7		0.5 1.35 1.8 2.7		0.5 1.35 1.8 2.7	V	2.0 4.5 6.0 9.0			
±Iı	input leakage current			0.1 0.2		1.0 2.0	为有	1.0 2.0	μΑ	6.0 10.0	0	V _{CC} or GND	
±I _S	analog switch OFF-state current per channel			0.1		1.0	C	1.0	μΑ	10.0	0	V _{IH} or V _{IL}	$ V_S = V_{CC} - V_{EE}$ (see Fig.10)
±I _S	analog switch OFF-state current all channels	3		0.1		1.0		1.0	μΑ	10.0	0	V _{IH} or V _{IL}	$ V_S = V_{CC} - V_{EE}$ (see Fig.10)
±I _S	analog switch ON-state current			0.1		1.0		1.0	μΑ	10.0	0	V _{IH} or V _{IL}	$ V_S = V_{CC} - V_{EE}$ (see Fig.11)
Icc	quiescent supply current			8.0 16.0		80.0 160.0		160.0 320.0	μΑ	6.0 10.0	0	V _{CC} or GND	$V_{is} = V_{EE}$ or V_{CC} ; $V_{OS} = V_{CC}$ or V_{EE}

Triple 2-channel analog multiplexer/demultiplexer

74HC/HCT4053

AC CHARACTERISTICS FOR 74HC

 $GND = 0 \ V; \ t_r = t_f = 6 \ ns; \ C_L = 50 \ pF$

		T _{amb} (°C)								Т	EST C	ONDITIONS
	[74H0	;						
SYMBOL	PARAMETER		+25		-40 t	o +85	-40 to	+125	UNIT	V _{CC} (V)	V _{EE} (V)	OTHER
		min.	typ.	max.	min.	max.	min.	max.				
t _{PHL} / t _{PLH}	propagation delay V _{is} to V _{os}		15 5 4 4	60 12 10 8		75 15 13 10		90 18 15 12	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = \infty$; $C_L = 50 \text{ pF}$ (see Fig.18)
t _{PZH} / t _{PZL}	turn "ON" time E to V _{os}		60 20 16 15	220 44 37 31		275 55 47 39		330 66 56 47	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Figs 19, 20 and 21)
t _{PZH} / t _{PZL}	turn "ON" time S _n to V _{os}		75 25 20 15	220 44 37 31		275 55 47 39	分下 CO	330 66 56 47	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Figs 19, 20 and 21)
t _{PHZ} / t _{PLZ}	turn "OFF" time E to V _{os}		63 21 17 15	210 42 36 29		265 53 45 36		315 63 54 44	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Figs 19, 20 and 21)
t _{PHZ} / t _{PLZ}	turn "OFF" time S _n to V _{os}		60 20 16 15	210 42 36 29		265 53 45 36		315 63 54 44	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Figs 19, 20 and 21)

74HC/HCT4053

DC CHARACTERISTICS FOR 74HCT

Voltages are referenced to GND (ground = 0 V)

				•	T _{amb} (°C)				TEST CONDITIONS				
SYMBOL	PARAMETER				74HC	T			UNIT	\ \ \	\ \ \	V _I	OTHER	
STWIBOL	PARAMETER		+25		−40 t	o +85	-40 to +125		UNII	V _{CC} (V)	V _{EE} (V)	VI	OTHER	
		min.	typ.	max.	min.	max.	min.	max.						
V _{IH}	HIGH level input voltage	2.0	1.6		2.0		2.0		V	4.5 to 5.5				
V _{IL}	LOW level input voltage		1.2	0.8		0.8		0.8	V	4.5 to 5.5				
±I _I	input leakage current			0.1		1.0	4. 為	1.0	μΑ	5.5	0	V _{CC} or GND		
±I _S	analog switch OFF-state current per channel			0.1		1.0	CC	1.0	μА	10.0	0	V _{IH} or V _{IL}	$ V_S = V_{CC} - V_{EE}$ Fig.10	
±l _S	analog switch OFF-state current all channels			0.1		1.0		1.0	μА	10.0	0	V _{IH} or V _{IL}	$V_S = V_{CC} - V_{EE}$ Fig.10	
±I _S	analog switch ON-state current			0.1		1.0		1.0	μА	10.0	0	V _{IH} or V _{IL}	$ V_S = V_{CC} - V_{EE}$ Fig.11	
Icc	quiescent supply current			8.0 16.0		80.0 160.0		160.0 320.0	μΑ	5.5 5.0	0 -5.0	V _{CC} or GND	$\begin{aligned} &V_{is} = V_{EE} \\ &\text{or } V_{CC}; \\ &V_{OS} = V_{CC} \\ &\text{or } V_{EE} \end{aligned}$	
Δlcc	additional quiescent supply current per input pin for unit load coefficient is 1 (note 1)		100	360		450		490	μΑ	4.5 to 5.5	0	V _{CC} -2.1 V	other inputs at V _{CC} or GND	

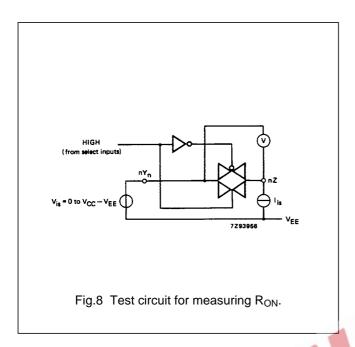
Note to HCT types

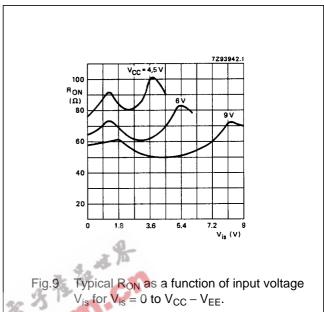
1. The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given here. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

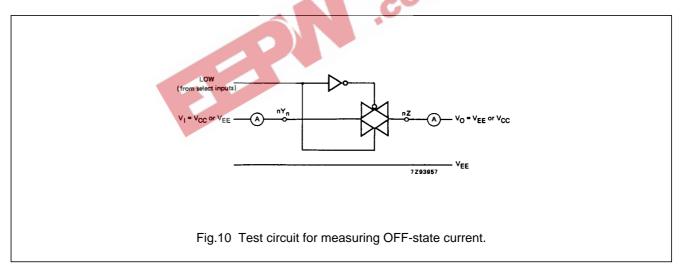
INPUT	UNIT LOAD COEFFICIENT
Sn	0.50
Ē	0.50

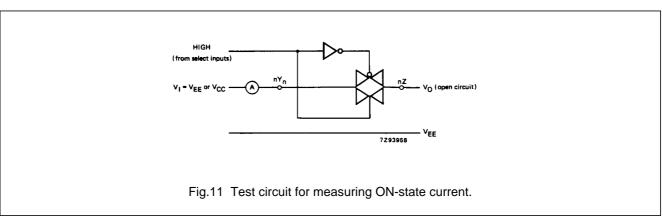
Triple 2-channel analog multiplexer/demultiplexer

74HC/HCT4053


AC CHARACTERISTICS FOR 74HCT


 $GND = 0 \ V; \ t_r = t_f = 6 \ ns; \ C_L = 50 \ pF$


					T _{amb} (°C)				Т	EST C	ONDITIONS
					74HC	т			<u> </u>			
SYMBOL	PARAMETER		+25		- 40 1	o +85	-40 to	+125	UNIT	V _{CC} (V)	V _{EE} (V)	OTHER
		min.	typ.	max.	min.	max.	min.	max.				
t _{PHL} / t _{PLH}	propagation delay V _{is} to V _{os}		5 4	12 8		15 10		18 12	ns	4.5 4.5	0 -4.5	$R_L = \infty$; $C_L = 50 \text{ pF}$ (see Fig.18)
t _{PZH} / t _{PZL}	turn "ON" time E to V _{os}		27 16	48 34		60 43		72 51	ns	4.5 4.5	0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Figs 19, 20 and 21)
t _{PZH} / t _{PZL}	turn "ON" time S _n to V _{os}		25 16	48 34		60 43	3.	72 51	ns	4.5 4.5	0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Figs 19, 20 and 21)
t _{PHZ} / t _{PLZ}	turn "OFF" time E to V _{os}		24 15	44 31		5 5 3 9	C	66 47	ns	4.5 4.5	0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Figs 19, 20 and 21)
t _{PHZ} / t _{PLZ}	turn "OFF" time S _n to V _{os}	3	22 15	44 31		55 39		66 47	ns	4.5 4.5	0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Figs 19, 20 and 21)


Triple 2-channel analog multiplexer/demultiplexer

74HC/HCT4053

Triple 2-channel analog multiplexer/demultiplexer

74HC/HCT4053

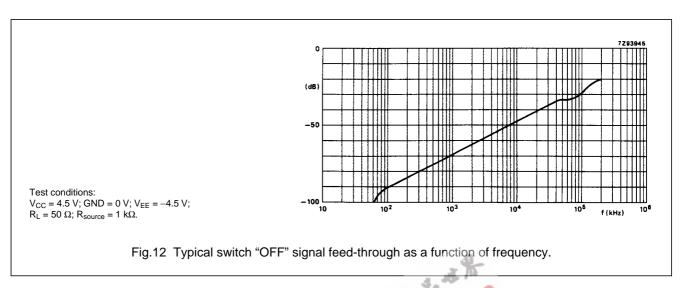
ADDITIONAL AC CHARACTERISTICS FOR 74HC/HCT

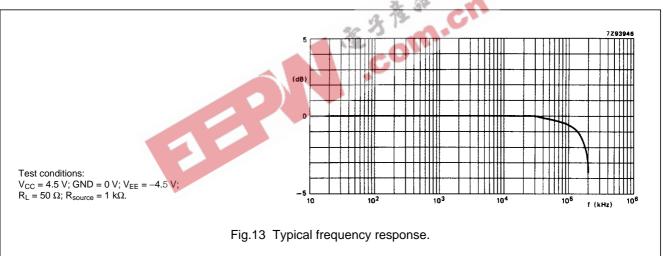
Recommended conditions and typical values

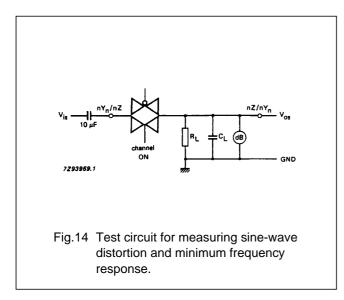
GND = 0 V; T_{amb} = 25 °C

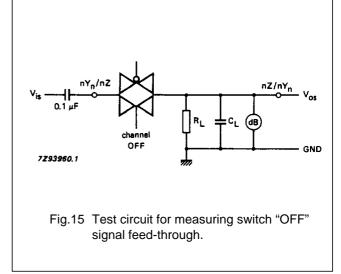
SYMBOL	PARAMETER	typ.	UNIT	V _{CC} (V)	V _{EE} (V)	V _{is(p-p)} (V)	CONDITIONS
	sine-wave distortion	0.04	%	2.25	-2.25	4.0	$R_L = 10 \text{ k}\Omega; C_L = 50 \text{ pF}$
	f = 1 kHz	0.02	%	4.5	-4.5	8.0	(see Fig.14)
	sine-wave distortion	0.12	%	2.25	-2.25	4.0	$R_L = 10 \text{ k}\Omega; C_L = 50 \text{ pF}$
	f = 10 kHz	0.06	%	4.5	-4.5	8.0	(see Fig.14)
	switch "OFF" signal	-50	dB	2.25	-2.25	note 1	$R_L = 600 \Omega; C_L = 50 pF$
	feed-through	-50	dB	4.5	-4.5		f = 1 MHz see (Fig.12 and 15)
	crosstalk between	-60	dB	2.25	-2.25	note 1	$R_L = 600 \Omega$; $C_L = 50 pF$;
	any two switches/ multiplexers	- 60	dB	4.5	<i>−</i> 4.5	3 %	f = 1 MHz (see Fig.16)
$V_{(p-p)}$	crosstalk voltage between control and any switch	110 220	mV mV	4.5 4.5	0_45		$R_L = 600 \text{ k}\Omega; C_L = 50 \text{ pF};$ $f = 1 \text{ MHz} (\overline{E} \text{ or } S_n,$
	(peak-to-peak value)			36	ON	1.0.	square-wave between V_{CC} and GND, $t_r = t_f = 6$ ns (see Fig.17)
f _{max}	minimum frequency response (–3dB)	160 170	MHz MHz	2.25 4.5	-2.25 -4.5	note 2	$R_L = 50 \Omega$; $C_L = 10 pF$ (see Fig.13 and 14)
Cs	maximum switch capacitance independent (Y) common (Z)	5 8	pF pF				

Notes to the AC characteristics

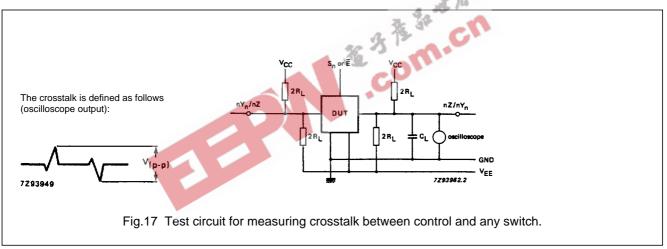

- 1. Adjust input voltage V_{is} to 0 dBm level (0 dBm = 1 mW into 600 Ω).
- 2. Adjust input voltage V_{is} to 0 dBm level at V_{OS} for 1 MHz (0 dBm = 1 mW into 50 Ω).


General note


 V_{is} is the input voltage at an nY_n or nZ terminal, whichever is assigned as an input.

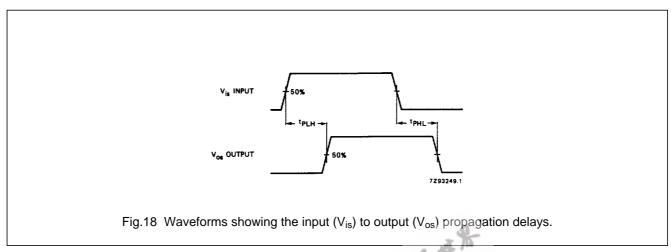

 V_{os} is the output voltage at an nY_n or nZ terminal, whichever is assigned as an output

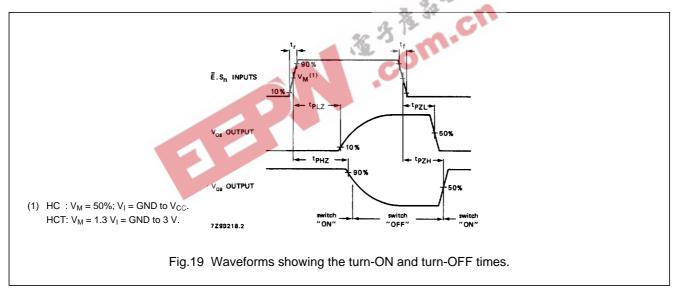
74HC/HCT4053



Triple 2-channel analog multiplexer/demultiplexer

74HC/HCT4053

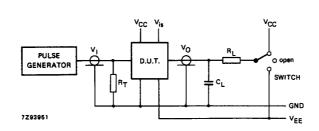




Triple 2-channel analog multiplexer/demultiplexer

74HC/HCT4053

AC WAVEFORMS



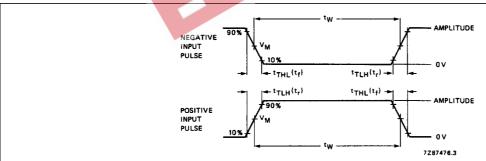
Triple 2-channel analog multiplexer/demultiplexer

74HC/HCT4053

TEST CIRCUIT AND WAVEFORMS

Conditions

TEST	SWITCH	V _{IS}
t _{PZH}	V _{EE}	V_{CC}
t _{PZL}	V _{CC}	V_{EE}
t _{PHZ}	V _{EE}	V_{CC}
t _{PLZ}	V _{CC}	V_{EE}
others	open	pulse


			t _r ; t _f	
FAMILY	AMPLITUDE	V _M	f _{max} ; PULSE WIDTH	OTHER
74HC	V _{CC}	50%	<2 ns	6 ns
74HCT	3.0 V	1.3 V	<2 ns	6 ns

C_L = load capacitance including jig and probe capacitance (see AC CHARACTERISTICS for values).

 R_T = termination resistance should be equal to the output impedance Z_O of the pulse generator.

 t_{r} = t_{f} = 6 ns; when measuring f_{max} , there is no constraint to t_{r} , t_{f} with 50% duty factor.

Fig.20 Test circuit for measuring AC performance.

Conditions

TEST	SWITCH	V _{IS}
t _{PZH}	V _{EE}	V_{CC}
t _{PZL}	V _{CC}	V_{EE}
t _{PHZ}	V _{EE}	V_{CC}
t_{PLZ}	V _{CC}	V_{EE}
others	open	pulse

	AMPLITUDE	V _M	t _r ; t _f	
FAMILY			f _{max} ; PULSE WIDTH	OTHER
74HC	V _{CC}	50%	<2 ns	6 ns
74HCT	3.0 V	1.3 V	<2 ns	6 ns

 C_L = load capacitance including jig and probe capacitance (see AC CHARACTERISTICS for values).

 R_T = termination resistance should be equal to the output impedance Z_O of the pulse generator.

 t_{r} = t_{f} = 6 ns; when measuring f_{max} , there is no constraint to t_{r} , t_{f} with 50% duty factor.

Fig.21 Input pulse definitions.

Triple 2-channel analog multiplexer/demultiplexer

74HC/HCT4053

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".

