
INTEGRATED CIRCUITS

Product specification Supersedes data of 1996 Aug 13 IC23 Data Handbook 1998 Feb 13

74ALVT16646

FEATURES

- 16-bit universal bus interface
- 5V I/O Compatible
- 3-State buffers
- Output capability: +64mA/-32mA
- TTL input and output switching levels
- Input and output interface capability to systems at 5V supply
- Bus-hold data inputs eliminate the need for external pull-up resistors to hold unused inputs
- Live insertion/extraction permitted
- No bus current loading when output is tied to 5V bus
- Power-up reset
- Power-up 3-State
- Latch-up protection exceeds 500mA per JEDEC Std 17
- ESD protection exceeds 2000V per MIL STD 883 Method 3015 and 200V per Machine Model

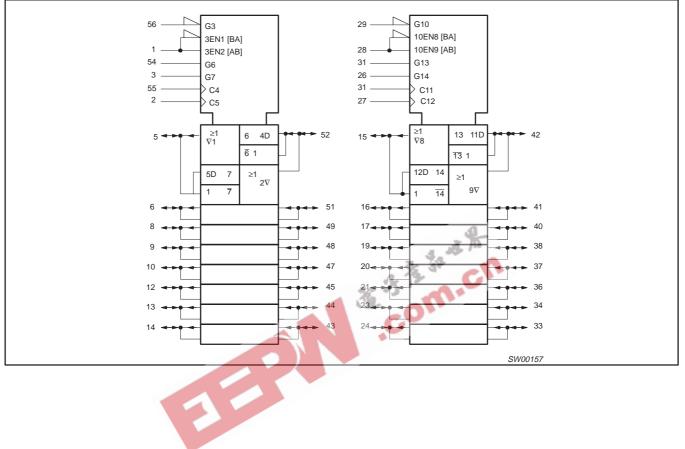
QUICK REFERENCE DATA

DESCRIPTION

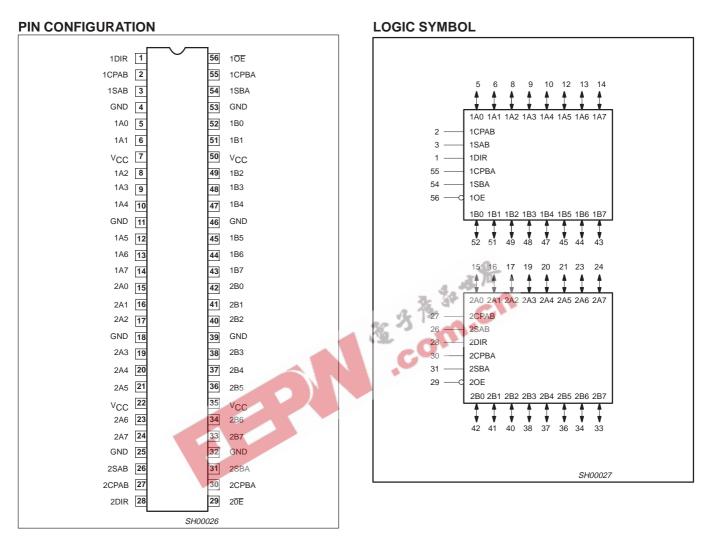
The 74ALVT16646 is a high-performance BiCMOS product designed for V_{CC} operation at 2.5V or 3.3V with I/O compatibility up to 5V.

This device is a 16-bit transceiver featuring non-inverting 3-State bus compatible outputs in both send and receive directions. The control function implementation minimizes external timing requirements. The device features an Output Enable (\overline{OE}) input for easy cascading and a Direction (DIR) input for direction control.

Data on the A or B bus is clocked into the registers on the Low to High transition of the appropriate clock (CPAB or CPBA). The select-control (SAB and SBA) inputs can multiplex stored and real-time (transparent mode data).


ſ	SYMBOL	PARAMETER	CONDITIONS	TYPI	CAL	UNIT
	OTMBOL		$T_{amb} = 25^{\circ}C$	2.5V	3.3V	UNIT
	t _{PLH} t _{PHL}	Propagation delay nAx to nBx or nBx to nAx	C _L = 50pF	2.2 2.3	1.7 1.8	ns
ſ	C _{IN}	Input capacitance DIR, OE	$V_{I} = 0V \text{ or } V_{CC}$	3	3	pF
	C _{I/O}	I/O pin capacitance	$N_{I/O} = 0V \text{ or } V_{CC}$	9	9	pF
	I _{CCZ}	Total supply current	Outputs disabled	40	70	μΑ

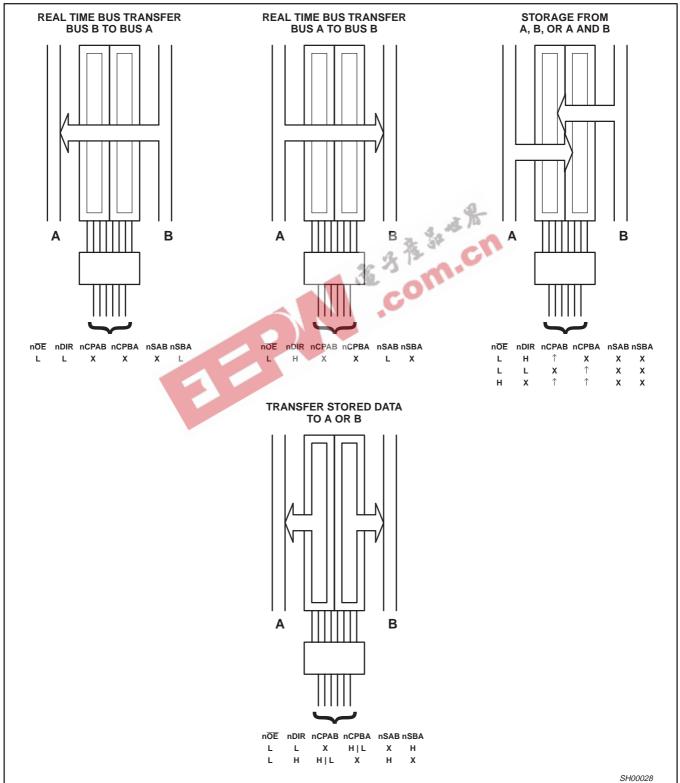
ORDERING INFORMATION


PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	DWG NUMBER
56-Pin Plastic SSOP Type III	-40°C to +85°C	74ALVT166646 DL	AV16646 DL	SOT371-1
56-Pin Plastic TSSOP Type II	-40°C to +85°C	74ALVT16646 DGG	AV16646 DGG	SOT364-1

74ALVT16646

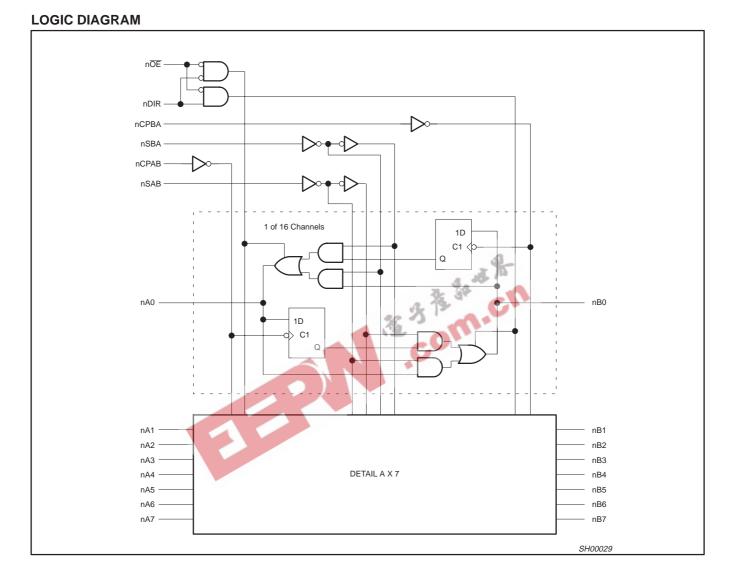
LOGIC SYMBOL (IEEE/IEC)

74ALVT16646



PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
2, 55, 27, 30	1CPAB, 1CPBA, 2CPAB, 2CPBA	Clock input A to B / Clock input B to A
3, 54, 26, 31	1SAB, 1SBA, 2SAB, 2SBA	Select input A to B / Select input B to A
1, 28	1DIR, 2DIR	Direction control inputs
5, 6, 8, 9, 10, 12, 13, 14 15, 16, 17, 19, 20, 21, 23, 24	1A0 - 1A7, 2A0 - 2A7	Data inputs/outputs (A side)
52, 51, 49, 48, 47, 45, 44, 43 42, 41, 40, 38, 37, 36, 34, 33	1B0 - 1B7, 2B0 - 2B7	Data inputs/outputs (B side)
56, 29	10E, 20E	Output enable inputs
4, 11, 18, 25, 32, 39, 46, 53	GND	Ground (0V)
7, 22, 35, 50	V _{CC}	Positive supply voltage


74ALVT16646

The following examples demonstrate the four fundamental bus-management functions that can be performed with the 74ALVT16646.

1998 Feb 13

74ALVT16646

FUNCTION TABLE

	INPUTS					DAT	A I/O	OPERATING MODE
nOE	nDIR	nCPAB	nCPBA	nSAB	nSBA	nAx	nBx	OPERATING MODE
х	Х	¢	Х	х	Х	Input	Unspecified output*	Store A, B unspecified
х	Х	Х	\uparrow	х	Х	Unspecified output*	Input	Store B, A unspecified
H H	X X	↑ H or L	↑ H or L	X X	X X	Input	Input	Store A and B data Isolation, hold storage
L	L L	X X	X H or L	X X	L H	Output	Input	Real time B data to A bus Stored B data to A bus
L	H H	X H or L	X X	L H	X X	Input	Output	Real time A data to B bus Stored A data to B bus

H = High voltage level

L = Low voltage levelX = Don't care

X = Don't can $\uparrow = Low-to-H$ * The data

Low-to-High clock transition

The data output function may be enabled or disabled by various signals at the nOE input. Data input functions are always enabled, i.e., data at the bus pins will be stored on every Low-to-High transition of the clock.

74ALVT16646

ABSOLUTE MAXIMUM RATINGS^{1, 2}

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to +4.6	V
I _{IK}	DC input diode current	V ₁ < 0	-50	mA
VI	DC input voltage ³		-0.5 to +7.0	V
I _{OK}	DC output diode current	V _O < 0	-50	mA
V _{OUT}	DC output voltage ³	Output in Off or High state	-0.5 to +7.0	V
	DC output current	Output in Low state	128	mA
Ιουτ		Output in High state	-64	
T _{stg}	Storage temperature range		-65 to +150	°C

NOTES:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction 2.

 The performance capability of a high-performance integrated circuit in conjunction with its integrated circuit should not exceed 150°C.
The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed. .com.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	2.5V RAN	2.5V RANGE LIMITS		GE LIMITS	UNIT
STNIDUL	PARAMETER	MIN	MAX	MIN	MAX	UNIT
V _{CC}	DC supply voltage	2.3	2.7	3.0	3.6	V
VI	Input voltage	0	5.5	0	5.5	V
VIH	High-level input voltage	1.7		2.0		V
V _{IL}	Input voltage		0.7		0.8	V
I _{OH}	High-level output current		-8		-32	mA
le:	Low-level output current		8		32	mA
IOL	Low-level output current; current duty cycle \leq 50%; f \geq 1kHz		24		64	IIIA
$\Delta t/\Delta v$	Input transition rise or fall rate; Outputs enabled		10		10	ns/V
T _{amb}	Operating free-air temperature range	-40	+85	-40	+85	°C

74ALVT16646

				LIMITS			
SYMBOL	PARAMETER	TEST CONDITIONS	Temp =	-40°C to	+85°C		
			MIN	TYP ¹	MAX	1	
V _{IK}	Input clamp voltage	$V_{CC} = 3.0V; I_{IK} = -18mA$		-0.85	-1.2	V	
V		$V_{CC} = 3.0$ to 3.6V; $I_{OH} = -100\mu A$	V _{CC} -0.2	V _{CC}		v	
V _{OH}	High-level output voltage	$V_{CC} = 3.0V; I_{OH} = -32mA$	2.0	2.3			
		V _{CC} = 3.0V; I _{OL} = 100μA		0.07	0.2		
V _{OL}	Low-level output voltage	V _{CC} = 3.0V; I _{OL} = 16mA		0.25	0.4	V	
		V _{CC} = 3.0V; I _{OL} = 32mA		0.3	0.5		
		V _{CC} = 3.0V; I _{OL} = 64mA		0.4	0.55		
V _{RST}	Power-up output low voltage ⁶	$V_{CC} = 3.6V; I_{O} = 1mA; V_{I} = V_{CC} \text{ or GND}$			0.55	V	
		$V_{CC} = 3.6V; V_I = V_{CC} \text{ or GND}$		0.1	±1		
		$V_{CC} = 0 \text{ or } 3.6V; V_I = 5.5V$		0.1	10		
I _I	Input leakage current	V _{CC} = 3.6V; V _I = 5.5V		0.1	20	μA	
		$V_{CC} = 3.6V; V_L = V_{CC}$ I/O Data pins ⁴		0.5	10		
		$V_{\rm CC} = 3.6V; V_{\rm I} = 0$		0.1	-5		
I _{OFF}	Off current	$V_{CC} = 0V$; V_{I} or $V_{O} = 0$ to 4.5V		0.1	±100	μA	
		$V_{CC} = 3V; V_{I} = 0.8V$	75	130		μA	
I _{HOLD}	Bus Hold current Data inputs ⁷	$V_{CC} = 3V$; $V_{I} = 2.0V$	-75	-140		μA	
		$V_{CC} = 3.0V; V_I = 0V \text{ to } 3.6V$	±500			μA	
I_{EX}	Current into an output in the High state when $V_O > V_{CC}$	V _O = 5.5V; V _{CC} = 3.0V		50	125	μA	
I _{PU/PD}	Power up/down 3-State output current ³	$V_{CC} \leq$ 1.2V; V_{O} = 0.5V to $V_{CC};$ V_{I} = GND or $V_{CC};$ OE/OE = Don't care		40	±100	μA	
I _{CCH}		V_{CC} = 3.6V; Outputs High, V_I = GND or V_{CC} , I_O = 0		0.07	0.14		
I _{CCL}	Quiescent supply current	V_{CC} = 3.6V; Outputs Low, V_I = GND or V_{CC} , I_O = 0		3.2	7	mA	
I _{CCZ}	1	V_{CC} = 3.6V; Outputs Disabled; V_{I} = GND or $V_{CC,\ I_{O}}$ = 0^{5}		0.07	0.14		
ΔI_{CC}	Additional supply current per input pin ²	V_{CC} = 3V to 3.6V; One input at V_{CC} –0.6V, Other inputs at V_{CC} or GND		0.04	0.4	mA	

DC ELECTRICAL CHARACTERISTICS (3.3V ± 0.3V RANGE)

NOTES:

1. All typical values are at V_{CC} = 3.3V and T_{amb} = 25°C. 2. This is the increase in supply current for each input at the specified voltage level other than V_{CC} or GND

2. This is the increase in supply current to reach input at the specified voltage level of the inflat V_{CC} of GND 3. This parameter is valid for any V_{CC} between 0V and 1.2V with a transition time of up to 10msec. From V_{CC} = 1.2V to V_{CC} = 3.3V \pm 0.3V a transition time of 100µsec is permitted. This parameter is valid for T_{amb} = 25°C only. 4. Unused pins at V_{CC} or GND. 5. I_{CCZ} is measured with outputs pulled up to V_{CC} or pulled down to ground. 6. For valid test results, data must not be loaded into the filp-flops (or latches) after applying power.

7. This is the bus hold overdrive current required to force the input to the opposite logic state.

74ALVT16646

AC CHARACTERISTICS (3.3V ± 0.3 V RANGE)

GND = 0V; $t_R = t_F = 2.5ns$; $C_L = 50pF$; $R_L = 500\Omega$; $T_{amb} = -40^{\circ}C$ to +85°C.

				LIMITS		
SYMBOL	PARAMETER	WAVEFORM	V _C	$c = 3.3V \pm 0.000$.3V	UNIT
			MIN	TYP ¹	MAX	
f _{MAX}	Maximum clock frequency	1	150			MHz
t _{PLH} t _{PHL}	Propagation delay nCPAB to nBx or nCPBA to nAx	1	1.0 1.0	2.6 2.1	3.7 3.1	ns
t _{PLH} t _{PHL}	Propagation delay nSAB to nBx or nSBA to nAx	2	1.0 1.0	2.4 2.1	4.0 3.8	ns
t _{PLH} t _{PHL}	Propagation delay nAx to nBx or nBx to nAx	2 3	0.5 0.5	1.7 1.8	2.4 2.8	ns
t _{PZH} t _{PZL}	Output enable time to High and Low level	5 6	0.5 0.5	2.3 2.0	3.9 4.4	ns
t _{PHZ} t _{PLZ}	Output disable time from High and Low Level	5 6	1.5 1.5	3.4 2.8	5.0 4.2	ns
t _{PZH} t _{PZL}	Output enable time nDIR to nAx or nBx	5 5	1.0 0.5	2.8 2.2	5.0 4.7	ns
t _{PHZ} t _{PLZ}	Output disable time nDIR to nAx or nBx	5 6	1.5 1.0	3.5 3.1	5.4 4.7	ns

NOTE:

1. All typical values are at V_{CC} = 3.3V and T_{amb} = 25°C.

AC SETUP REQUIREMENTS (3.3V ± 0.3V RANGE)

GND = 0V; $t_R = t_F = 2.5$ ns; $C_L = 50$ pF; $R_L = 500\Omega$; $T_{amb} = -40$ °C to +85°C.

			LIM	ITS	
SYMBOL	PARAMETER	WAVEFORM	V _{CC} = 3.3	$V_{CC} = 3.3V \ \pm 0.3V$	
			MIN	TYP ¹	
t _S (H) t _S (L)	Setup time, High or Low nAx to nCPAB or nBx to nCPBA	4	1.6 1.6	1.0 1.0	ns
t _h (H) t _h (L)	Hold time, High or Low nAx to nCPAB or nBx or nCPBA	4	0.0 0.0	-0.5 -0.7	ns
t _w (H) t _w (L)	Pulse width, High or Low nCPAB or nCPBA	1	1.5 1.5		ns

NOTE:

1. This data sheet limit may vary among suppliers.

74ALVT16646

					LIMITS		
SYMBOL	PARAMETER	TEST CONDITIONS		Temp = -40°C to +85°C			
			MIN	TYP ¹	MAX		
V _{IK}	Input clamp voltage	$V_{CC} = 2.3V; I_{IK} = -18mA$			-0.85	-1.2	V
V _{OH}	High-level output voltage	$V_{CC} = 2.3 \text{ to } 3.6 \text{V}; I_{OH} = -100 \mu \text{A}$		V _{CC} -0.2	V _{CC}		v
VОН	r lightevel output voltage	$V_{CC} = 2.3V; I_{OH} = -8mA$		1.8	2.1		v
	V _{CC} = 2.3V; I _{OL} = 100μA			0.07	0.2		
V _{OL}	Low-level output voltage	$V_{CC} = 2.3V; I_{OL} = 24mA$			0.3	0.5	V
		$V_{CC} = 2.3V; I_{OL} = 8mA$				0.4	
V _{RST}	Power-up output low voltage ⁷	V_{CC} = 2.7V; I_{O} = 1mA; V_{I} = V_{CC} or GND				0.55	V
		$V_{CC} = 2.7 V$; $V_I = V_{CC}$ or GND	Control ning		0.1	±1	
		V _{CC} = 0 or 2.7V; V _I = 5.5V	Control pins		0.1	10	
I _I	Input leakage current	V _{CC} = 2.7V; V _I = 5.5V			0.1	20	μA
		$V_{CC} = 2.7V; V_I = V_{CC}$	I/O Data pins ⁴		0.1	10]
		$V_{CC} = 2.7 V; V_{I} = 0$	AAD		0.1	-5	1
I _{OFF}	Off current	$V_{CC} = 0V; V_{I} \text{ or } V_{O} = 0 \text{ to } 4.5V$	34 _0		0.1	±100	μA
I _{HOLD}	Bus Hold current	V _{CC} = 2.3V; V _I = 0.7V	0		90		μA
-	A or B inputs ⁶	V _{CC} = 2.3V; V _I = 1.7V			-10		μA
I_{EX}	Current into an output in the High state when $V_O > V_{CC}$	$V_{O} = 5.5V; V_{CC} = 2.3V$			50	125	μΑ
I _{PU/PD}	Power up/down 3-State output current ³	$V_{CC} \le 1.2V$; $V_O = 0.5V$ to V_{CC} ; $V_I = GNE$ OE/OE = Don't care	0 or V _{CC} ;		40	100	μA
I _{ССН}		V_{CC} = 2.7V; Outputs High, V_I = GND or V	V _{CC} , I _{O =} 0		0.04	0.1	
I _{CCL}	Quiescent supply current	$V_{CC} = 2.7$ V; Outputs Low, V _I = GND or V _{CC} , I _O = 0			2.3	4.5	mA
I _{CCZ}		$V_{CC} = 2.7V$; Outputs Disabled; $V_I = GND$	$V_{CC} = 2.7V$; Outputs Disabled; $V_I = GND$ or V_{CC} , $I_O = 0^5$		0.04	0.1	
ΔI_{CC}	Additional supply current per input pin ²	V_{CC} = 2.3V to 2.7V; One input at V _{CC} -0. Other inputs at V _{CC} or GND	.6V,		0.01	0.4	mA

DC ELECTRICAL CHARACTERISTICS (2.5V ± 0.2V RANGE)

NOTES:

1. All typical values are at V_{CC} = 2.5V and T_{amb} = 25°C.

1. All typical values are at $v_{CC} = 2.5v$ and $T_{amb} = 25$ C. 2. This is the increase in supply current for each input at the specified voltage level other than V_{CC} or GND 3. This parameter is valid for any V_{CC} between 0V and 1.2V with a transition time of up to 10msec. From $V_{CC} = 1.2V$ to $V_{CC} = 2.5V \pm 0.2V$ a transition time of 100µsec is permitted. This parameter is valid for $T_{amb} = 25^{\circ}$ C only.

4. Unused pins at V_{CC} or GND.

5. I_{CCZ} is measured with outputs pulled up to V_{CC} or pulled down to ground.

6. Not guaranteed.

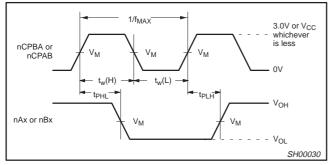
7. For valid test results, data must not be loaded into the flip-flops (or latches) after applying power.

74ALVT16646

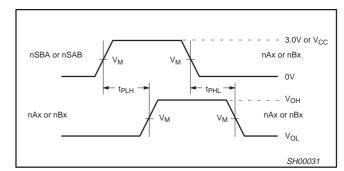
AC CHARACTERISTICS (2.5V ± 0.2V RANGE)

GND = 0V; $t_R = t_F = 2.5ns$; $C_L = 50pF$; $R_L = 500\Omega$; $T_{amb} = -40^{\circ}C$ to +85°C.

PARAMETER			LIMITS				
PARAMETER	WAVEFORM	V _C	UNIT				
		MIN	TYP ¹	MAX			
Maximum clock frequency	1	150			MHz		
Propagation delay nCPAB to nBx or nCPBA to nAx	1	1.0 1.0	3.2 2.8	4.8 4.2	ns		
Propagation delay nSAB to nBx or nSBA to nAx	2	1.5 1.5	3.4 3.4	5.8 6.0	ns		
Propagation delay nAx to nBx or nBx to nAx	2 3	0.5 0.5	2.2 2.3	3.2 3.8	ns		
Output enable time to High and Low level	5 6	1.5 1.0	3.4 2.7	5.8 6.0	ns		
Output disable time from High and Low Level	5 6	1.5 1.0	3.2 2.5	5.2 3.7	ns		
Output enable time nDIR to nAx or nBx	5 6	2.0 1.0	4.1 2.5	7.0 4.1	ns		
Output disable time nDIR to nAx or nBx	5	1.5 1. 0	3.9 3.1	6.1 4.9	ns		
ues are at $V_{CC} = 3.3V$ and $T_{amb} = 25^{\circ}C$.	CO						
2	Propagation delay nCPAB to nBx or nCPBA to nAx Propagation delay nSAB to nBx or nSBA to nAx Propagation delay nAx to nBx or nBx to nAx Output enable time to High and Low level Output disable time nDIR to nAx or nBx Output disable time nDIR to nAx or nBx Uses are at $V_{CC} = 3.3V$ and $T_{amb} = 25^{\circ}C$. EQUIREMENTS (2.5V ± 0.2V RANCE	Propagation delay nCPAB to nBx or nCPBA to nAx1Propagation delay nSAB to nBx or nSBA to nAx2Propagation delay nAx to nBx or nSBA to nAx2Propagation delay nAx to nBx or nBx to nAx2Output enable time to High and Low level5Output disable time from High and Low Level6Output enable time from High and Low Level5Output enable time from High and Low Level5Output disable time nDIR to nAx or nBx5Output disable time nDIR to nAx or nBx6	Maximum clock frequency1150Propagation delay nCPAB to nBx or nCPBA to nAx11.0Propagation delay nSAB to nBx or nSBA to nAx21.5Propagation delay nAx to nBx or nSBA to nAx20.5Output enable time to High and Low level51.5Output disable time nDIR to nAx or nBx51.5Output disable time nDIR to nAx or nBx61.0Output disable time nDIR to nAx or nBx51.5DUR to nAx or nBx61.0DUR to nAx or nBx <t< td=""><td>Maximum clock frequency 1 150 Propagation delay nCPAB to nBx or nCPBA to nAx 1 1.0 3.2 Propagation delay nSAB to nBx or nCPBA to nAx 2 1.5 3.4 Propagation delay nSAB to nBx or nSBA to nAx 2 0.5 2.2 Propagation delay nAx to nBx or nSBA to nAx 2 0.5 2.2 Output enable time 5 1.5 3.4 to High and Low level 6 1.0 2.7 Output disable time 5 1.5 3.2 from High and Low Level 6 1.0 2.5 Output enable time 5 1.5 3.2 from High and Low Level 6 1.0 2.5 Output disable time 5 1.5 3.9 nDIR to nAx or nBx 6 1.0 3.1</td><td>Maximum clock frequency 1 150 Propagation delay nCPAB to nBx or nCPBA to nAx 1 1.0 3.2 4.8 Propagation delay nSAB to nBx or nCPBA to nAx 2 1.5 3.4 5.8 Propagation delay nSAB to nBx or nSBA to nAx 2 1.5 3.4 6.0 Propagation delay nSAB to nBx or nSBA to nAx 2 0.5 2.2 3.2 Propagation delay nAx to nBx or nBx to nAx 3 0.5 2.3 3.8 Output enable time to High and Low level 5 1.5 3.4 5.8 Output disable time from High and Low Level 5 1.5 3.2 5.2 Output enable time nDIR to nAx or nBx 5 1.5 3.2 5.2 Mutual to an Ax or nBx 6 1.0 2.5 4.1 Output disable time nDIR to nAx or nBx 5 1.5 3.9 6.1 Mutual to an Ax or nBx 6 1.0 3.1 4.9 Uses are at V_{CC} = 3.3V and T_{amb} = 25°C. 4.3 4.9 4.9</td></t<>	Maximum clock frequency 1 150 Propagation delay nCPAB to nBx or nCPBA to nAx 1 1.0 3.2 Propagation delay nSAB to nBx or nCPBA to nAx 2 1.5 3.4 Propagation delay nSAB to nBx or nSBA to nAx 2 0.5 2.2 Propagation delay nAx to nBx or nSBA to nAx 2 0.5 2.2 Output enable time 5 1.5 3.4 to High and Low level 6 1.0 2.7 Output disable time 5 1.5 3.2 from High and Low Level 6 1.0 2.5 Output enable time 5 1.5 3.2 from High and Low Level 6 1.0 2.5 Output disable time 5 1.5 3.9 nDIR to nAx or nBx 6 1.0 3.1	Maximum clock frequency 1 150 Propagation delay nCPAB to nBx or nCPBA to nAx 1 1.0 3.2 4.8 Propagation delay nSAB to nBx or nCPBA to nAx 2 1.5 3.4 5.8 Propagation delay nSAB to nBx or nSBA to nAx 2 1.5 3.4 6.0 Propagation delay nSAB to nBx or nSBA to nAx 2 0.5 2.2 3.2 Propagation delay nAx to nBx or nBx to nAx 3 0.5 2.3 3.8 Output enable time to High and Low level 5 1.5 3.4 5.8 Output disable time from High and Low Level 5 1.5 3.2 5.2 Output enable time nDIR to nAx or nBx 5 1.5 3.2 5.2 Mutual to an Ax or nBx 6 1.0 2.5 4.1 Output disable time nDIR to nAx or nBx 5 1.5 3.9 6.1 Mutual to an Ax or nBx 6 1.0 3.1 4.9 Uses are at V _{CC} = 3.3V and T _{amb} = 25°C. 4.3 4.9 4.9		

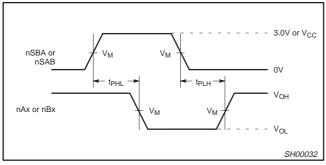

AC SETUP REQUIREMENTS (2.5V ± 0.2V RANGE)

GND = 0V; $t_R = t_F = 2.5ns$; $C_L = 50pF$; $R_L = 500\Omega$; $T_{amb} = -40^{\circ}C$ to $+85^{\circ}C$.

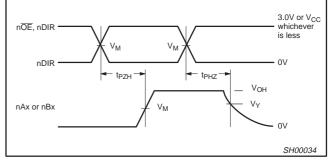

			LIM		
SYMBOL	PARAMETER	WAVEFORM	V _{CC} = 2.5	$5V \pm 0.2V$	UNIT
			MIN	ТҮР	
t _S (H) t _S (L)	Setup time, High or Low nAx to nCPAB or nBx to nCPBA	4	2.0 2.0	1.2 1.2	ns
t _h (H) t _h (L)	Hold time, High or Low nAx to nCPAB or nBx or nCPBA	4	0.0 0.0	-1.0 -1.0	ns
t _w (H) t _w (L)	Pulse width, High or Low nCPAB or nCPBA	1	1.5 1.5		ns

AC WAVEFORMS

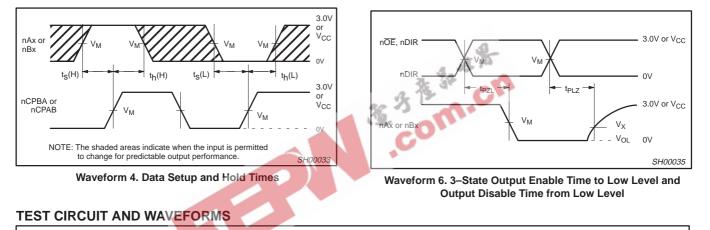
 V_M = 1.5V at $V_{CC}\,\geq\,3.0V;\,V_M$ = $V_{CC}/2$ at $V_{CC}\,\leq\,2.7V$ $\begin{array}{l} V_X = V_{OL} + 0.3 V \mbox{ at } V_{CC} \geq 3.0 V; \ V_X = V_{OL} + 0.15 V \mbox{ at } V_{CC} \leq 2.7 V \\ V_Y = V_{OH} - 0.3 V \mbox{ at } V_{CC} \geq 3.0 V; \ V_Y = V_{OH} - 0.15 V \mbox{ at } V_{CC} \leq 2.7 V \end{array}$

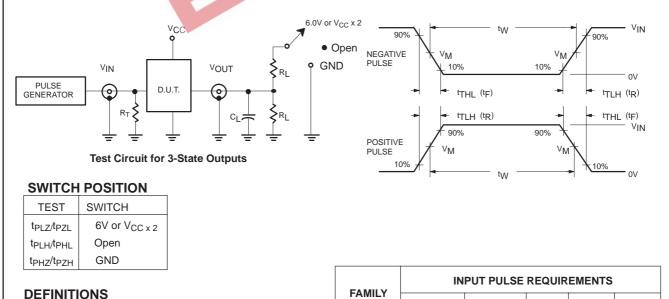


Waveform 1. Propagation Delay, Clock Input to Output, Clock Pulse Width, and Maximum Clock Frequency

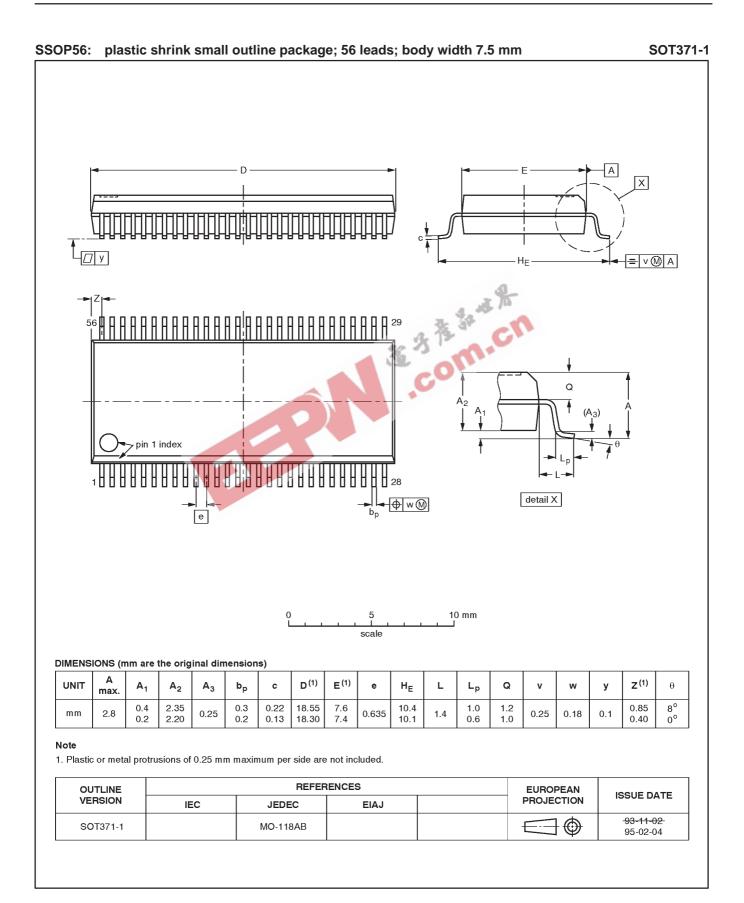


Waveform 2. Propagation Delay, nSAB to nBx or nSBA to nAx, nAx to nBx or nBx to nAx

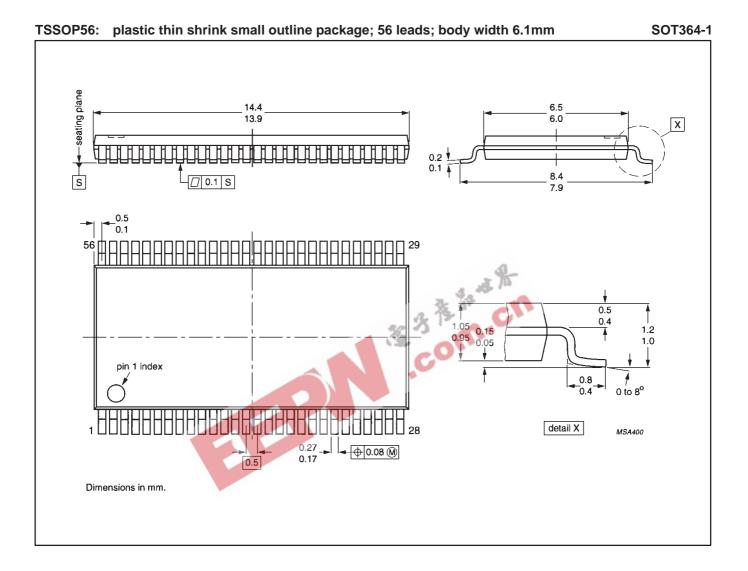

74ALVT16646



Waveform 3. Propagation Delay, nSBA to nAx or nSAB to nBx


Waveform 5. 3–State Output Enable Time to High Level and Output Disable Time from High Level

- R_L = Load resistor; see AC CHARACTERISTICS for value.
- C_L = Load capacitance includes jig and probe capacitance: See AC CHARACTERISTICS for value.
- $\label{eq:RT} \begin{array}{ll} \mathsf{R}_{T} = & \mbox{Termination resistance should be equal to } Z_{OUT} \mbox{ of } \\ & \mbox{pulse generators.} \end{array}$


FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	t _W	t _R	t _F
74ALVT16	3.0V or V _{CC} whichever is less	≤10MHz	500ns	≤2.5ns	≤2.5ns

74ALVT16646

74ALVT16646

2.5V/3.3V 16-bit bus transceiver (3-State)

74ALVT16646

Data sheet status

Data sheet status	Product status	Definition [1]	
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.	
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later d Philips Semiconductors reserves the right to make chages at any time without notice in order to improve design and supply the best possible product.	
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to mak changes at any time without notice in order to improve design and supply the best possible pro-	

[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

print code Document order number: Date of release: 05-96 9397-750-03572

Let's make things better.

