

74VCX32

Absolute Maximum Ratings(Note 1)

Recommended Operating
Conditions (Note 3)

Supply Voltage (V _{CC})	-0.5V to +4.6V
DC Input Voltage (VI)	-0.5V to 4.6V
DC Output Voltage (V _O)	
HIGH or LOW State (Note 2)	–0.5V to V_{CC} + 0.5V
$V_{CC} = 0V$	-0.5V to +4.6V
DC Input Diode Current (IIK)	
V ₁ < 0V	–50 mA
DC Output Diode Current (I _{OK})	
V _O < 0V	–50 mA
V _O > V _{CC}	+50 mA
DC Output Source/Sink Current	±50 mA
(I _{OH} /I _{OL})	
DC V_{CC} or Ground Current per	±100 mA
Supply Pin (I _{CC} or Ground)	
Storage Temperature (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$

Power Supply	
Operating	1.65V to 3.6V
Data Retention Only	1.2V to 3.6V
Input Voltage	-0.3V to 3.6V
Output Voltage (V _O)	
HIGH or LOW State	0V to V_{CC}
Output Current in I _{OH} /I _{OL}	
$V_{CC} = 3.0V$ to 3.6V	±24 mA
$V_{CC} = 2.3V$ to 2.7V	±18 mA
$V_{CC} = 1.65V$ to 2.3V	±6 mA
Free Air Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Minimum Input Edge Rate ($\Delta t/\Delta V$)	
V_{IN} = 0.8V to 2.0V, V_{CC} = 3.0V	10 ns/V
Note 1: The "Absolute Maximum Ratings" are those	e values beyond which

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation. Note 2: J₀ Absolute Maximum Rating must be observed. Note 3: Floating or unused inputs must be held HIGH or LOW.

DC Electrical Characteristics $(2.7V < V_{CC} \le 3.6V)$

Symbol	Parameter	Conditions	V _{CC} (V)	Min	Max	Units
√ _{IH}	HIGH Level Input Voltage		2.7–3.6	2.0		V
VIL	LOW Level Input Voltage		2.7–3.6		0.8	V
√ _{он}	HIGH Level Output Voltage	$I_{OH} = -100 \mu A$	2.7–3.6	V _{CC} - 0.2		
		I _{OH} = -12 mA	2.7	2.2		v
		I _{OH} = -18 mA	3.0	2.4		v
		$I_{OH} = -24 \text{ mA}$	3.0	2.2		
V _{OL} LOW Level Output Voltage	LOW Level Output Voltage	I _{OL} = 100 μA	2.7–3.6		0.2	
		I _{OL} = 12 mA	2.7		0.4	v
		I _{OL} = 18 mA	3.0		0.4	v
		$I_{OL} = 24 \text{ mA}$	3.0		0.55	
I	Input Leakage Current	$0 \le V_I \le 3.6V$	2.7–3.6		±5.0	μΑ
OFF	Power Off Leakage Current	$0 \le (V_I, V_O) \le 3.6V$	0		10	μΑ
сс	Quiescent Supply Current	$V_I = V_{CC}$ or GND	2.7–3.6		20	
		$V_{CC} \le V_I \le 3.6V$	2.7–3.6		±20	μA
7l ^{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	2.7-3.6		750	μA

DC Electrical Characteristics (2.3V \leq V_{CC} \leq 2.7V)

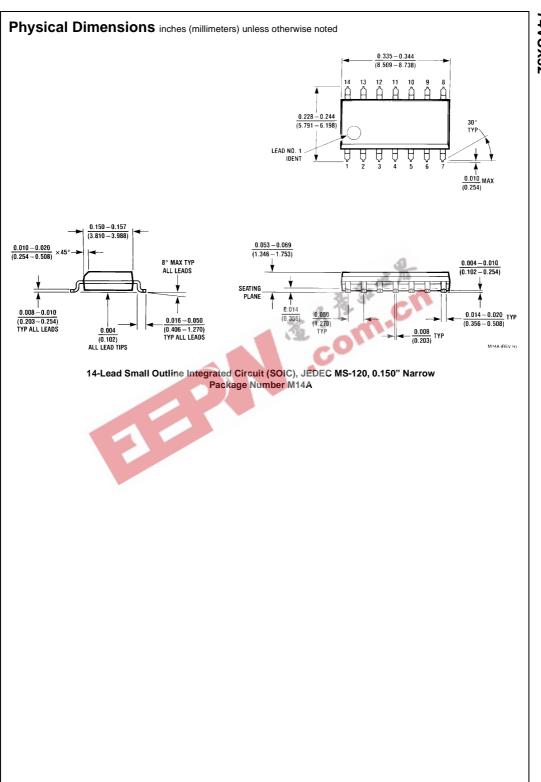
7
4
<
C)
×
ώ
N

Symbol	Parameter	Conditions	V _{CC} (V)	Min	Max	Units
/ _{IH}	HIGH Level Input Voltage		2.3–2.7	1.6		V
/ _{IL}	LOW Level Input Voltage		2.3–2.7		0.7	V
/ _{ОН}	HIGH Level Output Voltage	I _{OH} = -100 μA	2.3–2.7	V _{CC} - 0.2		
		$I_{OH} = -6 \text{ mA}$	2.3	2.0		v
		I _{OH} = -12 mA	2.3	1.8		v
		I _{OH} = -18 mA	2.3	1.7		
OL /	LOW Level Output Voltage	I _{OL} = 100 μA	2.3–2.7		0.2	
		I _{OL} = 12 mA	2.3		0.4	V
		I _{OL} = 18 mA	2.3		0.6	
I	Input Leakage Current	$0 \le V_I \le 3.6V$	2.3–2.7		±5.0	μΑ
OFF	Power Off Leakage Current	$0 \leq (V_I, V_O) \leq 3.6V$	0		10	μΑ
сс	Quiescent Supply Current	$V_I = V_{CC}$ or GND	2.3–2.7		20	μA
		$V_{CC} \le V_1 3.6V$	2.3-2.7		±20	μΑ

DC Electrical Characteristics (1.65V \leq V_{CC} < 2.3V)

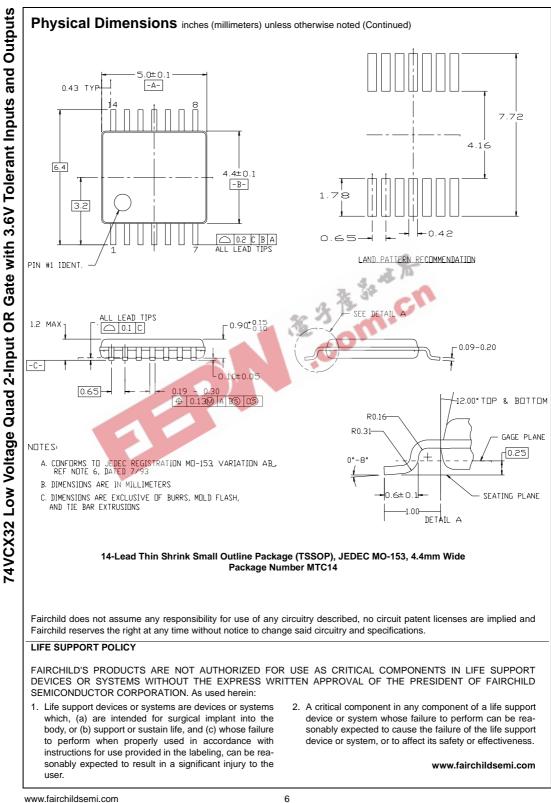
Symbol	Parameter	Conditions		V _{CC} (V)	Min	Max	Units
V _{IH}	HIGH Level Input Voltage			1.65–2.3	$0.65 \times V_{CC}$		V
V _{IL}	LOW Level Input Voltage		80 X	1.65-2.3		0.35 x V _{CC}	V
V _{OH}	HIGH Level Output Voltage	I _{OH} = -100 μA	122	1.65-2.3	V _{CC} - 0.2		V
		$I_{OH} = -6 \text{ mA}$		1.65	1.25		v
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA		1.65-2.3		0.2	V
		I _{OL} = 6 mA		1.65		0.3	v
l _l	Input Leakage Current	$0 \le V_l \le 3.6V$		1.65-2.3		±5.0	μΑ
I _{OFF}	Power Off Leakage Current	$0 \le (V_I, V_O) \le 3.6V$		0		10	μΑ
I _{CC}	Quiescent Supply Current	$V_I = V_{CC}$ or GND		1.65-2.3		20	
		$V_{CC} \le V_I \le 3.6V$		1.65-2.3		±20	μA

AC Electrical Characteristics (Note 4)


Symbol	bol Parameter	$\textbf{T}_{\textbf{A}}=-\textbf{40}^{\circ}\textbf{C}$ to +85°C, $\textbf{C}_{\textbf{L}}=\textbf{30pF},$ $\textbf{R}_{\textbf{L}}=\textbf{500}\Omega$						
		V _{CC} = 3.	$V_{CC}=3.3V\pm0.3V$		$V_{CC}=2.5V\pm0.2V$		$V_{CC}=1.8V\pm0.15V$	
		Min	Max	Min	Max	Min	Max	
t _{PHL}	Propagation Delay	0.6	2.8	0.8	3.7	1.0	7.4	ns
t _{PLH}								
t _{OSHL}	Output to Output		0.5		0.5		0.75	ns
t _{OSLH}	Skew (Note 5)							

Note 4: For $C_L = 50$ pF, add approximately 300 ps to the AC maximum specification.

Note 5: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}).


Symbol	Parameter		Conditions	V _{CC}	$T_A = 25^{\circ}C$	Ur
				(V)	Typical	
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	$C_L = 3$	$30 \text{ pF, } \text{V}_{\text{IH}} = \text{V}_{\text{CC}}, \text{ V}_{\text{IL}} = 0\text{V}$	1.8	0.25	`
				2.5 3.3	0.6 0.8	`
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	C ₁ = 3	$30 \text{ pF}, \text{ V}_{\text{IH}} = \text{V}_{\text{CC}}, \text{ V}_{\text{IL}} = 0 \text{V}$	1.8	-0.25	
OLV				2.5	-0.6	١
			3.3	-0.8		
V _{OHV}	Quiet Output Dynamic Valley V _{OH}	C _L = 3	$80 \text{ pF}, \text{ V}_{\text{IH}} = \text{V}_{\text{CC}}, \text{ V}_{\text{IL}} = 0 \text{V}$	1.8	1.5	
				2.5 3.3	1.9 2.2	١
Сара	citance				_:_	
Cumhal	Devenueior		Conditions		$T_A = +25^{\circ}C$	11
Symbol	Parameter		Conditions		Typical	Un
C _{IN}	Input Capacitance		$V_{I} = 0V \text{ or } V_{CC}, V_{CC} = 1.8V, 2.5V$		6	р
C _{OUT}	Output Capacitance Power Dissipation Capacitance		$V_{I} = 0V \text{ or } V_{CC}, V_{CC} = 1.8V, 2.5V$ $V_{I} = 0V \text{ or } V_{CC}, f = 10 \text{ MHz}, V_{CC}$		7 20	р
C _{PD}			· · · · · · · · · · · · · · · · · · ·		-~	р
		FIGURE TEST	1. AC Test Circuit			
		t _{PLH} , t _{PHL}	Open			
	FIGURE 2.	DATA IN DATA OUT Waveform for In	V _{cc} V _{mi} V _{cc} SND V _{mo} verting and Non-inverting F	unctions		
			V _{cc}			
	Sumbol	$\textbf{3.3V} \pm \textbf{0.3V}$	2.5V ± 0.2V	1.8V ± 0.15	v	
	Symbol		V _{CC} /2	V _{CC} /2		
	V _{mi}	1.5V		1/ /0		
	-	1.5V 1.5V	V _{CC} /2	V _{CC} /2		

www.fairchildsemi.com

www.fairchildsemi.com

