SN54136, SN54LS136, SN74136, SN74LS136 QUADRUPLE 2-INPUT EXCLUSIVE OR GATES WITH OPEN-COLLECTOR OUTPUTS SN54136, SN54LS136 . . . J OR W PACKAGE SN74136 . . . N PACKAGE DECEMBER 1972 - REVISED MARCH 1988 | FUi | VCTI(| ON TABLE | |-----|-------|----------| | INP | UTS | OUTPUT | | Α | 8 | } Y | | L | L | L | | L | н | н | | H | L | H | | Н | Н | L | H = high level, L = low level # logic symbol[†] | (1) | | | |--------------------|--------------|---------| | 1A (2) | = 1 ♀ | (3) 1Y | | 1B 121 | Δ. | | | 1B (4)
2A (5) | | (6) | | 2B (5) | | | | 3A (9) | | (8) | | 3B (10) | | (6) 3Y | | 3A (10)
3B (12) | | (11) | | 4B (13) | | 1111 4Y | | - U | | J | [†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for D, J, N, and W packages. #### logic diagram (each gate) SN74LS136 . . . D OR N PACKAGE (TOP VIEW) 1A 🗆 U14| Vcc 13 **4 B** 18 □2 17 □3 12 AA 11 4Y 2A 🛛 4 10∏ 3В 28 □ 5 9 3A 2Y 🛮 6 8 3Y GND 🛚 7 SN54LS136 . . . FK PACKAGE (TOP VIEW) NC - No internal connection ### positive logic $$Y = A \oplus B = \overline{A} \cdot B + A \cdot \overline{B}$$ #### schematics of inputs and outputs Resistor values shown are nominal, PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include tasting of all parameters. # SN54136, SN74136 QUADRUPLE 2-INPUT EXCLUSIVE OR GATES WITH OPEN-COLLECTOR OUTPUTS ## absolute maximum ratings over operating free-air temperature range (unless otherwise noted) | Supply voltage, VCC (see Note 1) | | | | | | | | | | | | | | 7 V | 1 | |---------------------------------------|---------|--|--|--|--|--|--|--|---|--|-----|-------------|------|--------|---| | Input voltage | | | | | | | | | | | | | | 5.5 V | 1 | | Operating free-air temperature range: | SN54136 | | | | | | | | - | | -55 | i°C | to | 125°0 | ; | | - | SN74136 | | | | | | | | | | | 0 °ı | C to | o 70°C |) | | Storage temperature range | | | | | | | | | | | | | | 150°C | | NOTE 1: Voltage values are with respect to network ground terminal #### recommended operating conditions | | ; | SN5413 | 6 | | SN7413 | 6 | UNIT | |------------------------------------|------|--------|-----|------|--------|------|-------| | | MIN | NOM | MAX | MIN | NOM | MAX | וועוט | | Supply voltage, VCC | 4.5 | 5 | 5.5 | 4.75 | 5 | 5.25 | ٧ | | High-level input voltage, VIH | 2 | | | 2 | | | V | | Low-level input voltage, VIL | | | 0.8 | | | 0.8 | V | | High-level output voltage, VOH | | | 5.5 | | | 5.5 | V | | Low-level output current, IOL | | | 16 | | | 16 | mA | | Operating free-air temperature, TA | - 55 | 4 | 125 | 0 | | 70 | °C | ## electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) | PARAMETER | | TECT | ONDITIONS† | | 20 % | | SN5413 | 6 | | SN7413 | 6 | UNIT | |------------------|------------------------|------------------------|------------------------|-----|-----------|-----|------------|-------|-----|--------|-------|------| | PANAMETEN | | 1851 0 | ONDITIONS. | | | MIN | TYP# | MAX | MIN | ТҮР‡ | MAX | UNIT | | V _{IK} | VCC = MIN, | $l_1 = -8 \text{ mA}$ | | | | 0, | | - 1.5 | | | - 1.5 | V | | la | VCC = MIN, | $V_{IH} = 2 V$ | $V_{ L} = 0.8 V$ | Vc | H = 5.5 V | | <u>-</u> . | | | | 0.25 | | | IOH | V _{CC} = MIN, | V _{IH} = 2 V, | $V_{IL} = 0.7 V$ | ٧c | H = 5.5 V | | | 0.25 | | | | mA | | VOL | V _{CC} = MIN, | $V_{IH} = 2 V_{i}$ | $V_{\rm IL} = 0.8 V$, | 101 | = 16 mA | | 0.2 | 0.4 | | 0.2 | 0.4 | V | | _ 1 | $V_{CC} = MAX,$ | V _I = 5.5 V | | | | | | 1 | | | 1 | mΑ | | ЛН | VCC = MAX, | $V_1 = 2.4 \text{ V}$ | | | | | | 40 | | | 40 | μА | | կլ | $V_{CC} = MAX$ | V ₁ = 0.4 V | | | | | | -1.6 | | | - 1.6 | mΑ | | lcc | VCC = MAX, | See Note 2 | | | | | 30 | 43 | | 30 | 50 | mA | $^{^{\}dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. ‡ All typical values are at V_{CC} = 5 V, T_A = 25 °C. NOTE 2: I_{CC} is measured with one input of each gate at 4.5 V, the other inputs grounded, and the outputs open. # switching characteristics, VCC = 5 V, TA = 25°C | PARAMETER¶ | FROM
(INPUT) | TEST COI | NDITIONS | MIN | TYP | MAX | UNIT | |--|-----------------|-------------------|---|-----|-----|-----|------| | tPLH | A or B | Other least law | 6 45 5 | | 12 | 18 | | | tPHL the transfer of trans | A OF B | Other input low | $C_{L} = 15 pF$,
$R_{L} = 400 \Omega$, | | 39 | 50 | ns | | tPLH | A or B | Other is not high | _ | | 14 | 22 | ns | | tPHL. | 7 ~ ~ ~ ~ ~ | Other input high | See Note 3 | | 42 | 55 |] '' | $[\]P_{\mathsf{tpLH}}$ propagation delay time, low-to-high-level output TPLH propagation delay time, high-to-low-level output NOTE 3: Load circuits and voltage waveforms are shown in Section 1. # SN54LS136, SN74LS136 QUADRUPLE 2-INPUT EXCLUSIVE-OR GATES WITH OPEN-COLLECTOR OUTPUTS ### absolute maximum ratings over operating free-air temperature range (unless otherwise noted) | Supply voltage, VCC (see Note 1) . | | | | | | | | | | 7 V | |---------------------------------------|-----------|--|---|--|--|--|--|-----|--|----------------| | Input voltage | | | | | | | | . , | | 7 V | | Operating free-air temperature range: | SN54LS136 | | - | | | | | | | -55°C to 125°C | | | SN74LS136 | | | | | | | | | . 0°C to 70°C | | Storage temperature range , , , , | | | | | | | | | | 0 0 | NOTE 1: Voltage values are with respect to network ground terminal. #### recommended operating conditions | | 12 | 154LS1 | 36 | SI | 36 | UNIT | | |--|-----|--------|-----|------|-----|------|-------| | | MIN | NOM | MAX | MIN | MOM | MAX | OIVIT | | Supply voltage, V _{CC} | 4.5 | 5 | 5.5 | 4.75 | 5 | 5.25 | V | | High-level output voltage, V _{OH} | | | 5.5 | | | 5.5 | V | | Low-level output current, IOL | | | 4 | | | 8 | mA | | Operating free-air temperature, TA | -55 | | 125 | 0 | | 70 | °C | ## electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) | DAGAMETER | 7507.0040 | TIONST | SN | 54LS13 | 36 | SN | UNIT | | | |--|--|---------------------------------|-----|--------|------|-----|------|------|------| | PARAMETER | TEST COND | HIONS | MIN | TYP | MAX | MIN | TYP# | MAX | UNII | | VIH High-level input voltage | | 25- | 2 | -41 | | 2 | | | ٧ | | VIL Low-level input voltage | | 12 19 | (| C1. | 0.7 | | | 0.8 | V | | VIK Input clamp voltage | VCC = MIN. II | = -18 mA | 1 | | -1.5 | | | -1.5 | ٧ | | IOH High-level output current | V _{CC} = MIN, V
V _{IL} = V _{IL} max, V | IH = 2 V,
OH = 5 .5 V | | | 100 | | | 100 | μА | | VOL Low-level output voltage | V _{IH} = 2 V, | ioL = 4 mA | | 0.25 | 0.4 | | 0.25 | 0.4 | ٧ | | | V _I L = V _{IL} max I | OL = 8 mA | | | | | 0.35 | 0.5 | | | I Input current at maximum input voltage | V _{CC} = MAX, V | = 7 V | | | 0.2 | | | 0.2 | mΑ | | IIH High-level input current | V _{CC} = MAX, V | i = 2.7 V | | | 40 | | | 40 | μА | | IIL Low-level input current | V _{CC} = MAX, V | j = 0.4 V | | | -0.8 | | | -0.8 | mΑ | | ICC Supply current | VCC = MAX, S | ee Note 2 | | 6.1 | 10 | | 6.1 | 10 | mA | [†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type. ‡ All typical values are at V_{CC} = 5 V, T_{A} = 25°C. NOTE 2: I_{CC} is measured with one input of each gate at 4.5 V, the other inputs grounded, and the outputs open. ## switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$ | PARAMETER¶ | FROM
(INPUT) | TEST CO | NDITIONS | MIN | ТҮР | MAX | UNIT | |------------------|-----------------|------------------|-----------------------|-----|-----|-----|------| | tPLH tPLH | A or B | Other input low | 0 - 15 - 5 | | 18 | 30 | ns | | tPHL | A 31 B | Other input low | Cլ=15 pF,
Rլ=2 kΩ, | | 18 | 30 | | | tPLH | A or B | Other input high | (See Note 3) | | 18 | 30 | ns | | ^t PHL | | Other input nigh | (355 140(83) | | 18 | 30 | | TtpLH propagation delay time, low-to-high-level output tpLH propagation delay time, high-to-low-level output NOTE 3: Load circuits and voltage waveforms are shown in Section 1. #### IMPORTANT NOTICE Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current. TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office. In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. #### **IMPORTANT NOTICE** Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK. In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.