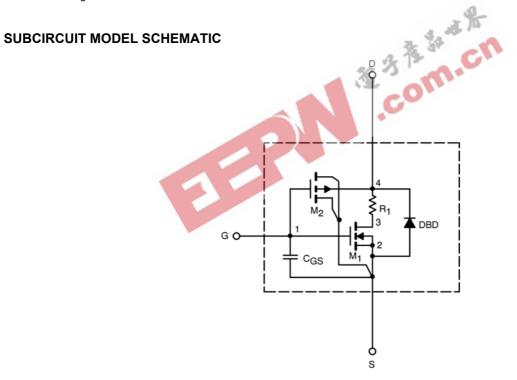


SPICE Device Model Si9926BDY

Vishay Siliconix

Dual N-Channel 2.5-V (G-S) MOSFET

CHARACTERISTICS


- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS

- Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125°C temperature ranges under the pulsed 0 to 5V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched Cqd model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

Document Number: 72413 www.vishay.com 01-Jun-04

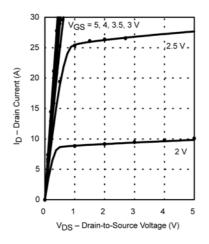
SPICE Device Model Si9926BDY

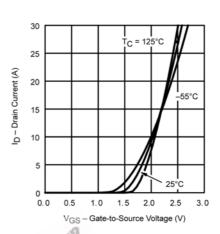
Vishay Siliconix

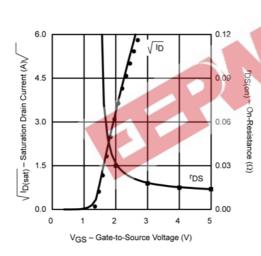
SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)					
Parameter	Symbol	Test Conditions	Simulated Data	Measured Data	Unit
Static					
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	0.96		V
On-State Drain Current ^a	I _{D(on)}	$V_{DS}~\geq 5~V,~V_{GS}$ = 4.5 V	394		Α
Drain-Source On-State Resistance ^a	r _{DS(on)}	$V_{GS} = 4.5 \text{ V}, I_D = 8.2 \text{ A}$	0.015	0.016	Ω
		V_{GS} = 2.5 V, I_{D} = 3.3 A	0.022	0.024	
Forward Transconductance ^a	g _{fs}	$V_{DS} = 15 \text{ V}, I_{D} = 8.2 \text{ A}$	26	29	S
Forward Voltage ^a	V_{SD}	$I_{S} = 1.7 \text{ A}, V_{GS} = 0 \text{ V}$	0.80	0.80	V
Dynamic ^b					
Total Gate Charge	Q_g	V_{DS} = 10 V, V_{GS} = 4.5 V, I_{D} = 8.2 A	10	11	nC
Gate-Source Charge	Q_gs		2.5	2.5	
Gate-Drain Charge	Q_{gd}		3.2	3.2	
Turn-On Delay Time	t _{d(on)}	V_{DD} = 10 V, R_L = 10 Ω $I_D \cong 1$ A, V_{GEN} = 10 V, R_G = 6 Ω	50	35	ns
Rise Time	t _r		32	50	
Turn-Off Delay Time	$t_{d(off)}$		24	31	
Fall Time	t _f		14	15	

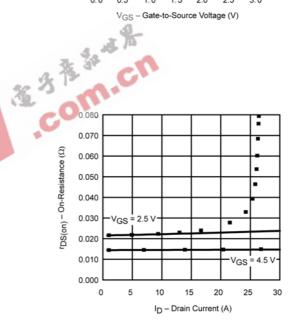
Notes

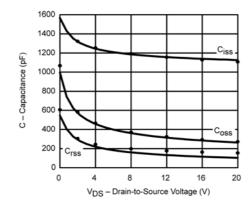
Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2%. Guaranteed by design, not subject to production testing.

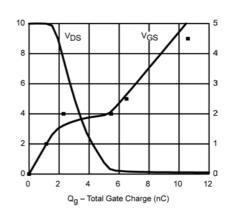

www.vishay.com Document Number: 72413




SPICE Device Model Si9926BDY


Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)



Note: Dots and squares represent measured data