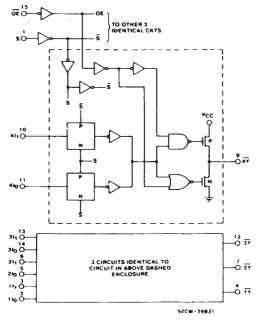

File Number 1775

High-Speed CMOS Logic

Quad 2-Input Multiplexer with 3-State Inverting Outputs

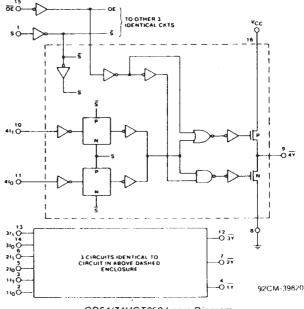
Type Features:


- Buffered inputs
- Typical CD54/74HC258 propagation delay = 7 ns @ Vcc = 5 V, CL = 15 pF, TA = 25°C

FUNCTIONAL DIAGRAM

The RCA-CD54/74HC258 and CD54/74HCT258 are guad 2input multiplexers which select four bits of data from two sources under the control of a common Select input (S). The Output Enable input (\overline{OE}) is active LOW. When \overline{OE} is HIGH, all of the outputs $(\overline{1Y}-\overline{4Y})$ are in the high impedance state regardless of all other input conditions.

Moying data from two groups of registers to four common output busses is a common use of the 258. The state of the Select input determines the particular register from which the data comes. It can also be used as a function generator.


The CD54HC/HCT258 are supplied in 16-lead hermetic dual-in-line ceramic packages (F suffix). The CD74HC/ HCT258 are supplied in 16-lead dual-in-line plastic packages (E suffix) and in 16-lead dual-in-line surface mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

CD54/74HC258 Logic Diagram

Family Features:

- Fanout (Over Temperature Range): Standard Outputs - 10 LSTTL Loads Bus Driver Outputs - 15 LSTTL Loads
- Wide Operating Temperature Range: CD74HC/HCT/HCU: -40 to +85°C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- Alternate Source is Philips/Signetics
- CD54HC/CD74HC Types: 2 to 6 V Operation High Noise Immunity:
- NIL = 30%, NIH = 30% of VCC; @ VCC = 5V ■ CD54HCT/CD74HCT Types: 4.5 to 5.5 V Operation
 - Direct LSTTL Input Logic Compatibility $V_{\rm IL} = 0.8 \ V \ Max., \ V_{\rm IH} = 2 \ V \ Min.$ CMOS Input Compatibility 1, ≤ 1 μA @ Vol VoH

CD54/74HCT258 Logic Diagram

MAXIMUM RATINGS, Absolute-Maximum Values:

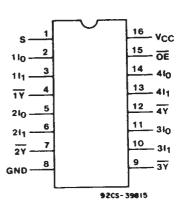
DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to + / V
DC INPUT DIODE CURRENT, IIK (FOR VI < -0.5 V OR VI > VCC +0.5V)	±20mA
DC OUTPUT DIODE CURRENT, lox (FOR Vo < -0.5 V OR Vo > Vcc +0.5V)	±20mA
DC DRAIN CURRENT PER OUTPUT (Ia) (FOR -0.5 V \leq V ₀ \leq V _{0c} + 0.5V)	±35mA
DC V _{CC} OR GROUND CURRENT (I _{CC})	±70mA
POWER DISSIPATION PER PACKAGE (Pa):	
For T _A = -40 to +60°C (PACKAGE TYPE E)	500 mW
For T ₂ = +60 to +85°C (PACKAGE TYPE E)	Derate Linearly at 8 mw/ C to 300 mw
For T _a = -55 to +100°C (PACKAGE TYPE F. H)	500 mw
For T _* = +100 to +125°C (PACKAGE TYPE F, H)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -40 to +70°C (PACKAGE TYPE M)	400 mw
For T _A = +70 to +125°C (PACKAGE TYPE M)	Derate Linearly at 6 mW/°C to 70 mW
OPERATING-TEMPERATURE BANGE (Ta):	
DAGMAGE TYPE E. H.	
PACKAGE TYPE E M	-40 to +85°C
STORAGE TEMPERATURE (Tstg)	65 to +150°C
LEAD TEMPERATURE (DURING SOLDERING)	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max	+265°C
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	. 其用
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm) with solder contacting lead tips only	+300°C
With solder contacting lead tips only	

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

	LIN	UNITS	
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A = Full Package-Temperature Range) V _{CC} :*			
CD54/74HC Types	2	6	V
CD54/74HCT Types	4.5	5.5	
DC Input or Output Voltage V _I , V _O	0	V _{cc}	
Operating Temperature T _A :			1
CD74 Types	-40	+85	l ∘c
CD54 Types	-55	+125	
Input Rise and Fall Times t _r , t _f			
at 2 V	0	1000	
at 4.5 V	0	500	ns
at 6 V	0	400	

^{*}Unless otherwise specified, all voltages are referenced to Ground.


FUNCTION TABLE

Output Enable	Select Input	1	ata outs	Output
ŌĒ	S	I ₀	H	Ÿ
Н	Х	Х	Х	Z
L	L	L	Х	Н
L	L	Н	X	L
L	н	X	L	Н
L	н	X	Н	L

H = High level voltage L = Low level voltage

X = Don't care.

Z = High impedance (off) state

TERMINAL ASSIGNMENT

1700

CD54/74HC258 CD54/74HCT258

STATIC ELECTRICAL CHARACTERISTICS

		CD74HC258/CD54HC258								CD74HCT258/CD54HCT258										
CHARACTERISTIC	co	TEST ONDITIONS			HC/54 TYPE	-		HC PE	1	HC PE	TEST 74HCT/54HCT				HCT (PE	54HCT TYPE				
	V,	I _o	V _{cc}		+25°(С		40/ 5° C		55/ 5°C	V,	V _{cc}	+25°		:	: 1		40/ -5 5°C +12		UNITS
Į.			ľ	Min	Тур	Max	Min	Max	Min	Max		*	Min	Тур	Max	Min	Max	Min	Max	
High-Level	1		2	1.5	-	-	1.5	-	1.5	_		4.5	-	-				\vdash		
Input Voltage V _{IH}		1	4.5	3.15	-		3.15	-	3.15	_	_	to	2	_	_	2	_	2	_	V
			6	4.2	-	-	4.2	_	4.2	-	1	5.5								
Low-Level			2	_	_	0.5	_	0.5	-	0.5		4.5					 	1	T	
Input Voltage V _{IL}			4.5	_	_	1.35	-	1.35	_	1.35	1 _	to	_	_	0.8	_	0.8	_	0.8	V
		į	6		_	1.8	_	1.8	_	1.8	1	5.5		4						
High-Level	V _{IL}		2	1.9	_	_	1.9	_	1.9	_	V _{IL}	4,	35	710						
Output Voltage V _{OH}	or	-0.02	4.5	4.4	_	_	4.4	_	4.4	_	Or.	4.5	4.4		(L)	4.4	_	4.4	_	V
CMOS Loads	Var		6	5.9	_	_	5.9	_	5.9	3	V _{IH}	4	1							
	V _K										V _R	,					ļ			
TTL Loads	or	-6	4.5	3.98	_	_4	3.84	_	3.7	_	or	4.5	3.98	_	_	3.84	_	3.7	_	v
(Bus Driver)	V _{iH}	-7.8	6	5.48	4	_	5.34	-	5.2	2	V _{IH}	·								
Low-Level	V _{IL}		2			0.1		0.1	_	0.1	V _{IL}									
Output Voltage Vol	or	0.02	4.5			0.1	_	0.1	_	0.1	or	4.5	_	_	0.1	_	0.1		0.1	v
CMOS Loads	V _{IH}		6	7	_	0.1	_	0.1		0.1	V _H									
	V _{IL}										V _{IL}									
TTL Loads	or	6	4.5	_	_	0.26		0.33	_	0.4	or	4.5	_	_	0.26		0.33		0.4	v
(Bus Driver)	V _{IM}	7.8	6	_	_	0.26	_	0.33	_	0.4	V _{IH}									
Input Leakage	V _{cc}						-				Any		\neg	\neg						
Current I,	or		6	_	_	±0.1	_	±1	_	±1	Voltage Between	5.5	_	_	±0.1	_	±1		±1	μΑ
	Gnd										V _{cc} & Grid									-
Quiescent	V _{cc}										V _{cc}			-						
Device	or	0	6	_	_	8	_	80	_	160	or	5.5	_	_	8	_	80	_	160	μΑ
Current Icc	Gnd										Gnd									
Additional		1	1	1					1	\dashv		4.5	\dashv				\dashv			
Quiescent Device Current										Ì	V _{cc} -2.1	to	_	100	360	_	450	_	490	μА
per input pin: 1 unit load Δlcc*							J		5.5								•			
3-State	V _H	Vo = Vcc					П				Vı	_	\dashv	\dashv	-		\neg		_	
leakage	or	or	6	_	_	±0.5	_	±5	_	±10	i	5.5	_	_	±0.5	_	±5	_	±10	μΑ
current loz			1	- 1	ſ	- 1			- 1				- 1	- 1		Ì			- ' -	par 1

HCT Input Loading Table

Input	Unit Loads*
Data	0.5
S	1.5
ŌĒ	1.5

^{*}Unit Load is ΔI_{CC} limit specified in Static Characteristic Chart, e.g., 360 μ A max. @ 25° C.

For dual-supply systems theoretical worst case (V_i = 2.4 V, V_{cc} = 5.5 V) specification is 1.8 mA.

SWITCHING CHARACTERISTICS (Vcc = 5 V, TA = 25°C, Input tr, tr = 6 ns)

OHADAGTEDIGTIG		CL	TYP	ICAL	UNITS
CHARACTERISTIC		(pF)	НС	нст	DRITS
$nl_{o}, nl_{l}, to \overline{Y}_{v}$	t _{PHL} t _{PLH}	15	7	11	ns
ŌĒ to Ÿ	t _{PZL} t _{PZH}	15	11	11	ns
	t _{PLZ} t _{PHZ}	15	12	12	ns
S to \overline{Y}	t _{PHL} t _{PLH}	15	11	14	ns
Power Dissipation Capacitance*	C _{PD}	_	49	49	pF

 $^{^*}C_{PD}$ is used to determine the dynamic power consumption, per multiplexer. $P_D = V_{CC}^2$ fi $(C_{PD} + C_L)$ where: fi = input frequency $C_L = c_L = c_L$ output load capacitance $c_L = c_L = c_L = c_L$

SWITCHING CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input t_r , $t_t = 6 \text{ ns}$)

			25°C			N 14	0°C	o +85°	C	-5					
CHARACTERISTIC		V _{cc}	HC		HCT		74HC		74HCT		54HC		54HCT		UNITS
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Propagation Delay,	t _{PLH}	2		95	$\sqrt{-}$		1	120	_	_	_	145		_	
nl_0 , nl_i , to \overline{Y}	t _{PHL}	4.5		19	_ \	27		24		34	-	29	—	41	ns
(Fig. 2)		6	9-	15	-			20				25		_	
Propagation Delay		2		140		-	l –	175	-	_	—	210		_	
S to \overline{Y}	tpLH	4.5	+	28	_	34	_	35	_	43	—	42		51	ns
(Fig. 3)	t _{PHL}	6	_	24				30				36		_	
Propagation Delay		2		140	-	_	_	175	_	-	-	210	—	-	
OE to Y	tezL	4.5	_	28	_	28	_	35	-	35	—	42	_	42	ns
(Fig. 4)	tezh	6	-	24	_	_		30	—			36	_		
Propagation Delay	tpLZ	2	_	150	_	_	_	190	_	_	-	225	_	-	
OE to Y		4.5	—	30	_	30	_	38	—	38	-	45		45	ns
(Fig. 4)	tenz	6	_	26	_	_		33		_	_	38			
Output Transition	t _{TLH}	2	_	60		_	_	75	_		_	90	_	_	
Time	t _{THL}	4.5	-	12		12	_	15	—	15	_	18	—	18	ns
(Fig. 2)		6		10	_	·—		13				15			
Input				10		10		10		10		10		10	pF
Capacitance	C,		_	10	_	10		10		10		10		'0	P1
3-State Output				20		20		20		20		20	_	20	рF
Capacitance	Co			20	_	20		20	<u> </u>	20		20			Þ,

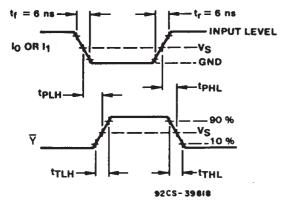


Fig. 2 - Select to output delays.

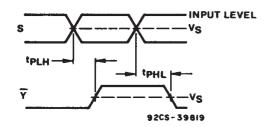


Fig. 3 - Select to output propagation delays.

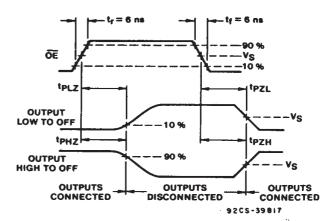
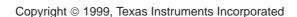


Fig. 4 - Output Enable to output propagation delays.

31	8-	
	54/74HC	54/74HCT
Input Level	V _{CC}	3V
Switching Voltage, Vs	50% V _{CC}	1.3 V

IMPORTANT NOTICE


Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

