

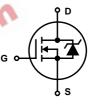
Data Sheet July 1999 File Number 3274.2

2.2A, 250V, 2.000 Ohm, N-Channel Power MOSFETs

These are N-Channel enhancement mode silicon gate power field effect transistors designed, tested, and guaranteed to withstand a specified level of energy in the breakdown avalanche mode of operation. They are advanced power MOSFETs are designed for use in applications such as switching regulators, switching converters, motor drivers, relay drivers and drivers for high-power bipolar switching transistors requiring high speed and low gate-drive power. These transistors can be operated directly from integrated circuits.

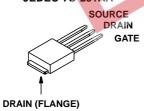
Formerly developmental type TA17443.

Ordering Information

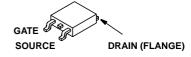

PART NUMBER	PACKAGE	BRAND		
IRFR214	TO-252AA	IRFR214		
IRFU214	TO-251AA	IRFU214		

NOTE: When ordering, use the entire part number.

Features


- 2.2A, 250V
- $r_{DS(ON)} = 2.000\Omega$
- Single Pulse Avalanche Energy Rated
- · SOA is Power Dissipation Limited
- · Nanosecond Switching Speeds
- · High Input Impedance
- 150°C Operating Temperature
- · Related Literature
 - TB334 "Guidelines for Soldering Surface Mount Components to PC Boards"

Symbo



Packaging

JEDEC TO-251AA

JEDEC TO-252AA

IRFR214, IRFU214

Absolute Maximum Ratings $T_C = 25^{\circ}C$, Unless Otherwise Specified

	IRFR214, IRFU214	UNITS
Drain to Source Voltage (Note 1)	250	V
Drain to Gate Voltage (Note 1)VDGR	250	V
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.2 1.4	A A
Pulsed Drain Current (Note 2)	8.8	Α
Gate to Source Voltage	±20	V
Maximum Power Dissipation	25	W
Linear Derating Factor	0.20	W/oC
Single Pulse Avalanche Rating (Note 4)	61	mJ
Operating and Storage Temperature	-55 to 150	oC
Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s	300 260	°C °C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

Electrical Specifications

device at these or any other conditions above thos	se indicated in th	e operational sections of this specification is not implied.								
NOTE: 1. TJ = 25°C TO 125°C		Otherwise Specified TEST CONDITIONS In = 250uA, Vcs = 0V	なる。							
Electrical Specifications T _C = 25°C, Unless Otherwise Specified										
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS				
Drain to Source Breakdown Voltage	BV _{DSS}	$I_D = 250 \mu A, V_{GS} = 0 V$	250	-	-	V				
Gate to Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = 250\mu A$	2	-	4	V				
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = Rated BV _{DSS} , V _{GS} = 0V	-	-	25	μА				
		V_{DS} =0.8 x Rated BV _{DSS} , V_{GS} = 0V T_{J} = 150 0 C	-	-	250	μА				
On-State Drain Current	I _{D(ON)}	$V_{DS} > I_{D(ON)} \times r_{DS(ON)MAX}, V_{GS} = 10V$		-	-	Α				
Gate to Source Leakage Current	I _{GSS}	$V_{GS} = \pm 20V$ $I_{D} = 1.3A, V_{GS} = 10V \text{ (Figure 8)}$	-	-	±100	nA				
Drain to Source On Resistance (Note 4)	r _{DS(ON)}		-	1.6	2.000	Ω				
Forward Transconductance (Note 4)	9fs	$V_{DS} = \ge 50V, I_{DS} = 1.3A$	1.1	-	-	S				
Turn-On Delay Time	t _{d(ON)}	$V_{DD} = 0.5 \text{ x Rated BV}_{DSS}, I_D \approx 2.7 \text{A}, R_{GS} = 24 \Omega,$		7.0	-	ns				
Rise Time	tr	R _L = 4.5Ω, V _{GS} = 10V MOSFET Switching Times are Essentially	-	7.6	-	ns				
Turn-Off Delay Time	t _{d(OFF)}	Independent of Operating Temperature	-	16	-	ns				
Fall Time	t _f	1		7.0	-	ns				
Total Gate Charge	Q _{g(TOT)}	$V_{GS} = 10V$, $I_{D} \approx 5.6A$, $V_{DS} = 0.8$ x Rated BV _{DSS} ,	-	-	10	nC				
Gate to Source Charge	Q _{gs}	Gate Charge is Essentially Independent of Oper-	-	-	1.8	nC				
Gate to Drain "Miller" Charge	Q _{gd}	ating Temperature		-	5.5	nC				
Input Capacitance	C _{ISS}	V _{GS} = 0V, V _{DS} = 25V, f = 1.0MHz	-	140	-	pF				
Output Capacitance	Coss	(Figure 9)	-	42	-	pF				
Reverse Transfer Capacitance C _{RSS}		1		9.6	-	pF				

IRFR214, IRFU214

Electrical Specifications $T_C = 25^{\circ}C$, Unless Otherwise Specified (Continued)

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNITS
Internal Drain Inductance	L _D	Measured From the Drain Lead, 6mm (0.25in) From Package to Center of Die	Inductances	-	4.5	-	nH
Internal Source Inductance	L _S	Measured From The Source Lead, 6mm (0.25in) From Header to Source Bonding Pad	G G ELS	-	7.5	-	nH
Thermal Resistance Junction to Case	R _{θJC}			-	-	5.0	°C/W
Thermal Resistance Junction to Ambient	$R_{\theta JA}$	Free Air Operation		-	-	110	°C/W

Source to Drain Diode Specifications

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Continuous Source to Drain Current	I _{SD}	Modified MOSFET	-	-	2.2	Α
Pulse Source to Drain Current (Note 2)	I _{SDM}	Symbol Showing the Integral Reverse P-N Junction Diode	-	-	8.8	A
Source to Drain Diode Voltage (Note 4)	V _{SD}	$T_J = 25^{\circ}C$, $I_{SD} = 2.2A$, $V_{GS} = 0V$ (Figure 10)	-	-	2.0	V
Reverse Recovery Time	t _{rr}	$T_J = 25^{\circ}C$, $I_{SD} = 2.7A$, $dI_{SD}/dt = 100A/\mu s$	97	-	390	ns
Reverse Recovery Charge	Q _{RR}	$T_J = 25^{\circ}C$, $I_{SD} = 2.7A$, $dI_{SD}/dt = 100A/\mu s$	0.32	-	1.3	μС

NOTES:

- 2. Pulse test: pulse width $\leq 300\mu s$, duty cycle $\leq 2\%$.
- 3. Repetitive rating: pulse width limited by maximum junction temperature. See Transient Thermal Impedance curve. (Figure 3)
- 4. V_{DD} = 50V, starting T_J = 25°C, L = 21mH, R_G = 25 Ω , peak I_{AS} = 2.2A.

Typical Performance Curves Unless Otherwise Specified

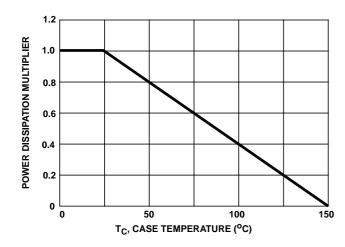


FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE

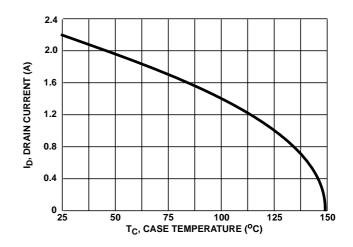


FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE

Typical Performance Curves Unless Otherwise Specified (Continued)

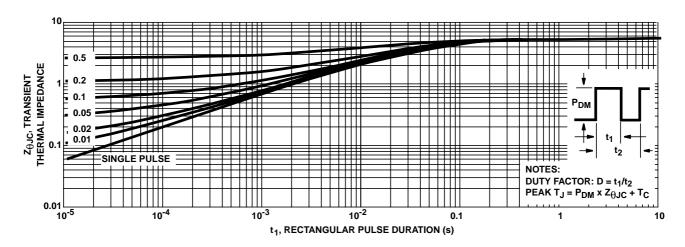


FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE

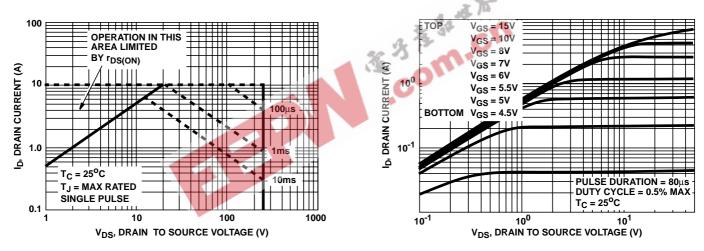


FIGURE 4. FORWARD BIAS SAFE OPERATING AREA

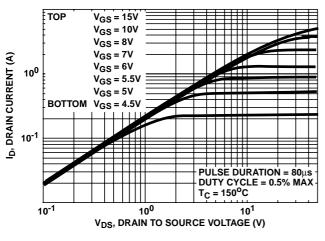


FIGURE 6. OUTPUT CHARACTERISTICS (T_C = 150°C)

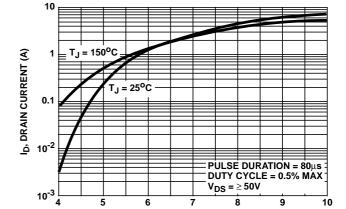
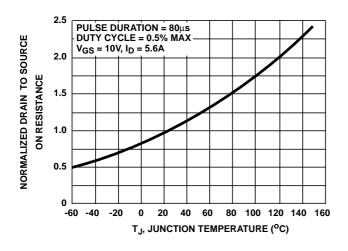



FIGURE 5. OUTPUT CHARACTERISTICS (T_C = 25°C)

FIGURE 7. TRANSFER CHARACTERISTICS

VGS, GATE TO SOURCE VOLTAGE (V)

Typical Performance Curves Unless Otherwise Specified (Continued)

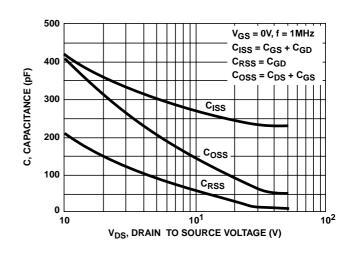
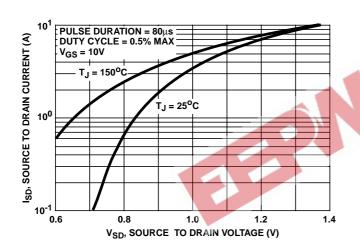



FIGURE 8. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE

FIGURE 9. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE

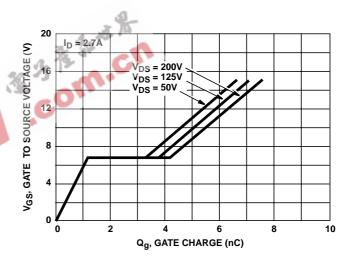


FIGURE 10. SOURCE TO DRAIN DIODE VOLTAGE

FIGURE 11. GATE TO SOURCE VOLTAGE vs GATE CHARGE

Test Circuits and Waveforms

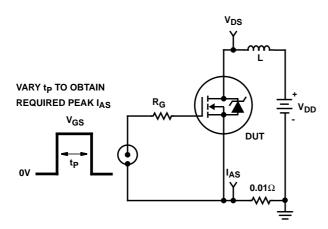


FIGURE 12. UNCLAMPED ENERGY TEST CIRCUIT

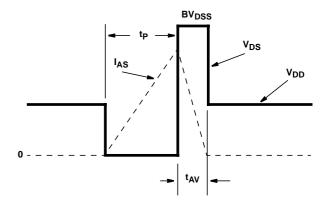


FIGURE 13. UNCLAMPED ENERGY WAVEFORMS

Test Circuits and Waveforms (Continued)

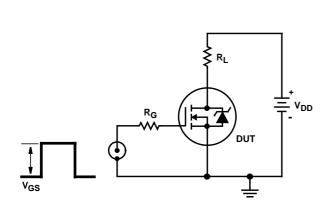


FIGURE 14. SWITCHING TIME TEST CIRCUIT

FIGURE 15. RESISTIVE SWITCHING WAVEFORMS

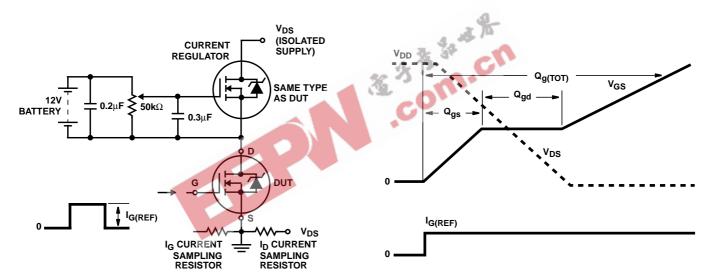


FIGURE 16. GATE CHARGE TEST CIRCUIT

FIGURE 17. GATE CHARGE WAVEFORMS

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com

Sales Office Headquarters

NORTH AMERICA

Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902

TEL: (407) 724-7000 FAX: (407) 724-7240 **EUROPE**

Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111

FAX: (32) 2.724.22.05

ASIA

Intersil (Taiwan) Ltd.
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Papublic of China

Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029