Dual 2-to-4 Decoder/ Demultiplexer

The MC74LVX139 is an advanced high speed CMOS 2-to-4 decoder/ demultiplexer fabricated with silicon gate CMOS technology.

When the device is enabled ($\overline{E} = low$), it can be used for gating or as a data input for demultiplexing operations. When the enable input is held high, all four outputs are fixed high, independent of other inputs.

The inputs tolerate voltages up to 7.0 V, allowing the interface of 5.0 V systems to 3.0 V systems.

- High Speed: $t_{PD} = 6.0 \text{ ns}$ (Typ) at $V_{CC} = 3.3 \text{ V}$
- Low Power Dissipation: $I_{CC} = 4 \mu A$ (Max) at $T_A = 25$ °C
- High Noise Immunity: $V_{NIH} = V_{NIL} = 28\% \ V_{CC}$
- Power Down Protection Provided on Inputs
- Balanced Propagation Delays
- Designed for 2 V to 3.6 V Operating Range
- Low Noise: $V_{OLP} = 0.5 \text{ V (Max)}$
- Pin and Function Compatible with Other Standard Logic Families
- Latchup Performance Exceeds 300 mA
- Chip Complexity: 100 FETs or 25 Equivalent Gates
- ESD Performance:

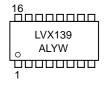
Human Body Model > 2000 V; Machine Model > 200 V

Pb–Free Packages are Available*

http://onsemi.com

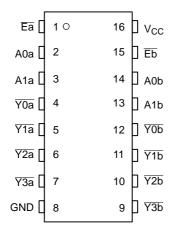
MARKING DIAGRAMS

SOIC-16 D SUFFIX CASE 751B



TSSOP-16 DT SUFFIX CASE 948F

SOEIAJ-16 M SUFFIX CASE 966


A = Assembly Location

 $WL ext{ or } L = Wafer Lot$ Y = Year $WW ext{ or } W = Work Week$

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

FUNCTION TABLE

Inputs			Outputs				
Ē	A1	A0	<u>Y0</u>	<u>Y1</u>	<u>Y2</u>	<u>Y3</u>	
Н	Х	Χ	Н	Н	Н	Н	
L	L	L	L	Н	Н	Н	
L	L	Н	Н	L	Н	Н	
L	Н	L	н	Н	L	Н	
L	Н	Н	Н	Н	Н	L	

Figure 1. Pin Assignment

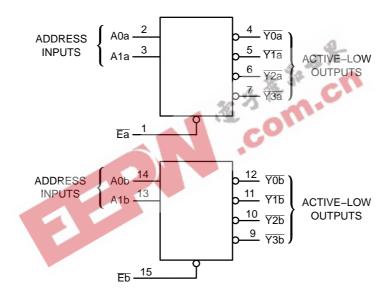


Figure 2. Logic Diagram

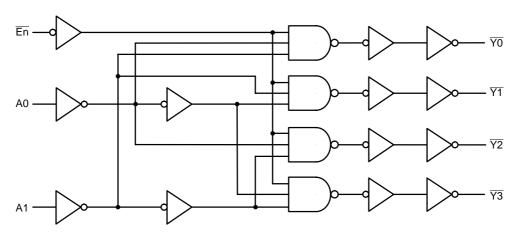
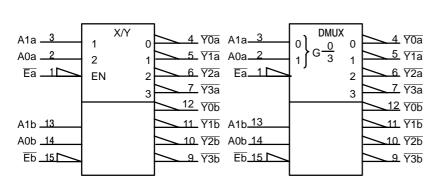



Figure 3. Expanded Logic Diagram (1/2 of Device)

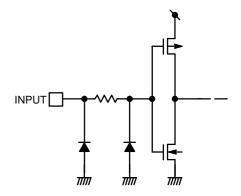


Figure 4. IEC Logic Diagram

Figure 5. Input Equivalent Circuit

MAXIMUM RATINGS

Symbol	Para	meter	Value	Unit
V _{CC}	Positive DC Supply Voltage		-0.5 to +7.0	V
V _{IN}	Digital Input Voltage	2_	-0.5 to +7.0	V
V _{OUT}	DC Output Voltage	3, 15, 16	-0.5 to V _{CC} +0.5	V
I _{IK}	Input Diode Current	4 1 ST	-20	mA
lok	Output Diode Current	38 3	±20	mA
I _{OUT}	DC Output Current, per Pin	4	±25	mA
I _{CC}	DC Supply Current, V _{CC} and GND Pins		±75	mA
P_{D}	Power Dissipation in Still Air	SOIC Package TSSOP	200 180	mW
T _{STG}	Storage Temperature Range		-65 to +150	°C
V _{ESD}	ESD Withstand Voltage	Human Body Model (Note 1) Machine Model (Note 2) Charged Device Model (Note 3)	>2000 >200 >200	V
I _{LATCHU} P	Latchup Performance	Above V _{CC} and Below GND at 125°C (Note 4)	±300	mA
θ_{JA}	Thermal Resistance, Junction-to-Ambient	SOIC Package TSSOP	143 164	°C/W

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

- 1. Tested to EIA/JESD22-A114-A
- 2. Tested to EIA/JESD22-A115-A
- 3. Tested to JESD22-C101-A
- 4. Tested to EIA/JESD78

RECOMMENDED OPERATING CONDITIONS

Symbol	Characteristics	Min	Max	Unit
V _{CC}	DC Supply Voltage	2.0	3.6	V
V _{IN}	DC Input Voltage	0	5.5	V
V _{OUT}	DC Output Voltage Output in 3-State High or Low State	0	V _{CC}	V
T _A	Operating Temperature Range, all Package Types	-40	85	°C
t _r , t _f	Input Rise or Fall Time $V_{CC} = 5.0 \text{ V} \pm 0.5 \text{ V}$	0	100	ns/V

DC CHARACTERISTICS (Voltages Referenced to GND)

			V _{CC}	T _A = 25°C			-40°C ≤ 1		
Symbol	Parameter	Condition	(V)	Min	Тур	Max	Min	Max	Unit
V _{IH}	Minimum High–Level Input Voltage		2.0 3.0 3.6	0.75 V _{CC} 0.7 V _{CC} 0.7 V _{CC}	- - -	- - -	0.75 V _{CC} 0.7 V _{CC} 0.7 V _{CC}		V
V _{IL}	Maximum Low–Level Input Voltage		2.0 3.0 3.6	1 1 1	1 1 1	0.25 V _{CC} 0.3 V _{CC} 0.3 V _{CC}	1 1 1	0.25 V _{CC} 0.3 V _{CC} 0.3 V _{CC}	V
V _{OH}	High-Level Output Voltage	$I_{OH} = -50 \mu A$ $I_{OH} = -50 \mu A$ $I_{OH} = -4 \text{ mA}$	2.0 3.0 3.0	1.9 2.9 2.58	2.0 3.0 3.0		1.9 2.9 2.48		V
V _{OL}	Low-Level Output Voltage	$I_{OL} = 50 \mu A$ $I_{OH} = 50 \mu A$ $I_{OH} = 4 \text{ mA}$	2.0 3.0 3.0	1 1 1	0.0	0.1 0.1 0.36	1 1 1	0.1 0.1 0.44	V
I _{IN}	Input Leakage Current	$V_{IN} = 5.5 \text{ V or GND}$	0 to 3.6	-	-	±0.1	-	±1.0	μΑ
I _{CC}	Maximum Quiescent Supply Current (per package)	$V_{IN} = V_{CC}$ or GND	3.6	1.0	1.0	2.0	1	ı	μА

AC ELECTRICAL CHARACTERISTICS Input $t_{\text{r}} = t_{\text{f}} = 3.0 \text{ ns}$

				. %	T _A = 25°C	-10	-40°C ≤	Γ _A ≤ 85°C	
Symbol	Parameter	Test Condit	ions	Min	Тур	Max	Min	Max	Unit
t _{PLH} , t _{PHL}	Maximum Propagation Delay, A to Y	V _{CC} = 2.7 V	$C_L = 15 \text{ pF}$ $C_L = 50 \text{ pF}$	ē0	8.5 11.0	15.0 16.5	1.0 1.0	17.8 18.0	ns
		$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	$C_L = 15 \text{ pF}$ $C_L = 50 \text{ pF}$	_	6.0 8.5	10.0 13.0	1.0 1.0	12.0 15.0	
t _{PLH} , t _{PHL}	Maximum Propagation Delay, \overline{E} to Y	V _{CC} = 2.7 V	$C_L = 15 \text{ pF}$ $C_L = 50 \text{ pF}$	1 1	8.0 10.0	13.0 16.5	1.0 1.0	15.5 18.0	ns
		$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	$C_L = 15 pF$ $C_L = 50 pF$	1 1	5.5 7.5	8.2 13.0	1.0 1.0	10.0 15.0	
C _{IN}	Maximum Input Capacitance			1	4	10	ı	10	pF
					Typical	@ 25°C, \	/ _{CC} = 3.3 V		
C _{PD}	Power Dissipation Capac	itance (Note 5)				26			pF

^{5.} C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC(OPR)} = C_{PD} • V_{CC} • f_{in} + I_{CC}/2 (per decoder). C_{PD} is used to determine the no–load dynamic power consumption; P_D = C_{PD} • V_{CC}² • f_{in} + I_{CC} • V_{CC}.

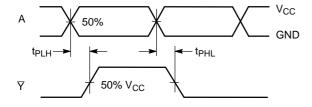


Figure 6. Switching Waveform

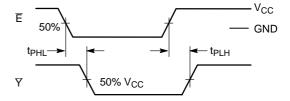
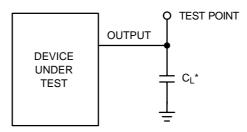



Figure 7. Switching Waveform

*Includes all probe and jig capacitance

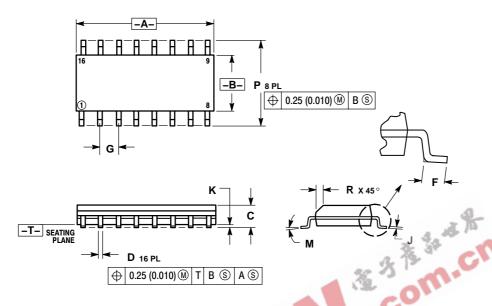
Figure 8. Test Circuit

ORDERING INFORMATION

Device	Package	Shipping [†]
MC74LVX139DR2	SOIC-16	2500 Tape & Reel
MC74LVX139DR2G	SOIC-16 (Pb-Free)	2500 Tape & Reel
MC74LVX139DTR2	TSSOP-16*	2500 Tape & Reel
MC74LVX139M	SOEIAJ-16	50 Units / Rail
MC74LVX139MG	SOEIAJ-16 (Pb-Free)	50 Units / Rail
MC74LVX139MEL	SOEIAJ-16	2000 Tape & Reel
MC74LVX139MELG	SOEIAJ-16 (Pb-Free)	2000 Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*This package is inherently Pb–Free.

EMBOSSED CARRIER DIMENSIONS (See Notes 6 and 7)


Tape Size	B ₁ Max	D	D ₁	E	F	к	Р	P ₀	P ₂	R	Т	w
8 mm	4.35 mm (0.179")	1.5 mm + 0.1 -0.0 (0.059"	1.0 mm Min (0.179")	1.75 mm ±0.1 (0.069 ±0.004")	3.5 mm ±0.5 (1.38 ±0.002")	2.4 mm Max (0.094")	4.0 mm ±0.10 (0.157 ±0.004")	4.0 mm ±0.1 (0.157 ±0.004")	2.0 mm ±0.1 (0.079 ±0.004")	25 mm (0.98")	0.6 mm (0.024)	8.3 mm (0.327)
12 mm	8.2 mm (0.323")	+0.004 -0.0)	1.5 mm Min (0.060)		5.5 mm ±0.5 (0.217 ±0.002")	6.4 mm Max (0.252")	4.0 mm ±0.10 (0.157 ±0.004") 8.0 mm ±0.10 (0.315 ±0.004")			30 mm (1.18")		12.0 mm ±0.3 (0.470 ±0.012")
16 mm	12.1 mm (0.476")				7.5 mm ±0.10 (0.295 ±0.004")	7.9 mm Max (0.311")	4.0 mm ±0.10 (0.157 ±0.004") 8.0 mm ±0.10 (0.315 ±0.004") 12.0 mm ±0.10 (0.472 ±0.004")					16.3 mm (0.642)
24 mm	20.1 mm (0.791")				11.5 mm ±0.10 (0.453 ±0.004")	11.9 mm Max (0.468")	16.0 mm ±0.10 (0.63 ±0.004")					24.3 mm (0.957)

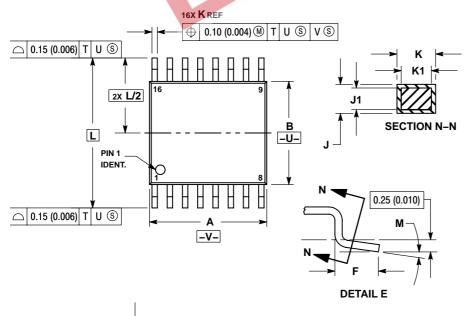
^{6.} Metric Dimensions Govern-English are in parentheses for reference only.

A₀, B₀, and K₀ are determined by component size. The clearance between the components and the cavity must be within 0.05 mm min to 0.50 mm max. The component cannot rotate more than 10° within the determined cavity

PACKAGE DIMENSIONS

SOIC-16 **D SUFFIX** CASE 751B-05 **ISSUE J**

NOTES:


- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
- DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.

 MAXIMUM MOLD PROTRUSION 0.15 (0.006)
- PEH SIDE.

 DIMENSION D DOES NOT INCLUDE DAMBAR
 PROTRUSION. ALLOWABLE DAMBAR
 PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	9.80	10.00	0.386	0.393	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.054	0.068	
D	0.35	0.49	0.014	0.019	
F	0.40	1.25	0.016	0.049	
G	1.27	BSC	0.050 BSC		
J	0.19	0.25	0.008	0.009	
K	0.10	0.25	0.004	0.009	
M	0°	7°	0°	7°	
Р	5.80	6.20	0.229	0.244	
R	0.25	0.50	0.010	0.019	

G

С

D

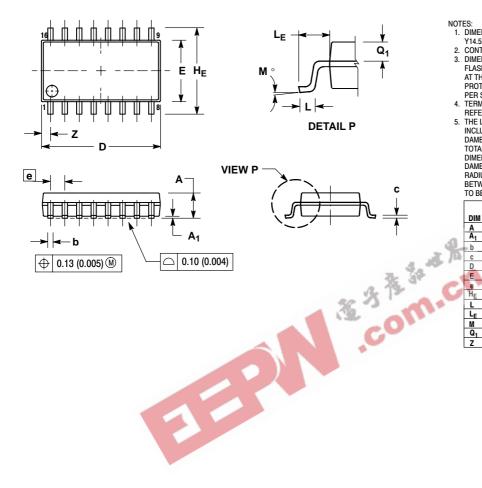
☐ 0.10 (0.004) -T- SEATING

- TTES:

 1. DIMENSIONING AND TOLERANCING PER
 ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: MILLIMETER.

 3. DIMENSION A DOES NOT INCLUDE MOLD
 FLASH. PROTRUSIONS OR GATE BURRS.
 MOLD FLASH OR GATE BURRS SHALL NOT
- MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.


 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.

 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION. SHALL BE 0.08
- (0.003) TOTAL IN EXCESS OF THE K
 DIMENSION AT MAXIMUM MATERIAL
- CONDITION.
 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE –W–.

	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	4.90	5.10	0.193	0.200	
В	4.30	4.50	0.169	0.177	
C		1.20		0.047	
D	0.05	0.15	0.002	0.006	
F	0.50	0.75	0.020	0.030	
G	0.65	BSC	0.026 BSC		
Н	0.18	0.28	0.007	0.011	
J	0.09	0.20	0.004	0.008	
J1	0.09	0.16	0.004	0.006	
K	0.19	0.30	0.007	0.012	
K1	0.19	0.25	0.007	0.010	
L	6.40		0.252 BSC		
М	0°	8°	0°	8 °	

DETAIL E

SOEIAJ-16 **M SUFFIX** CASE 966-01 **ISSUE O**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
- CON HOLLING DIMENSION: MILLIME I EH.

 DIMENSIONS D AND E DO NOT INCLUDE MOLD
 FLASH OR PROTRUSIONS AND ARE MEASURED
 AT THE PARTING LINE. MOLD FLASH OR
 PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006)
- PROTRUSIONS SHALL NOT EXCLED 0.15 (0.006)
 PER SIDE.

 4. TERMINAL NUMBERS ARE SHOWN FOR
 REFERENCE ONLY.

 5. THE LEAD WIDTH DIMENSION (b) DOES NOT
 INCLUDE DAMBAR PROTRUSION. ALLOWABLE
 DAMBAR PROTRUSION SHALL BE 0.08 (0.003)
 TOTAL IN EXCESS OF THE LEAD WIDTH
 DIMENSION AT MAXIMUM MATERIAL CONDITION.
 DAMBAR CANNOT BE LOCATED ON THE LOWER
 RADHIS OR THE FOOT MINIMUM SPACE RADIUS OR THE FOOT. MINIMUM SPACE
 BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018).

	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α		2.05		0.081	
A ₁	0.05	0.20	0.002	0.008	
⊳ b	0.35	0.50	0.014	0.020	
С	0.18	0.27	0.007	0.011	
D	9.90	10.50	0.390	0.413	
E	5.10	5.45	0.201	0.215	
e	1.27	BSC	0.050 BSC		
ΉE	7.40	8.20	0.291	0.323	
L	0.50	0.85	0.020	0.033	
LE	1.10	1.50	0.043	0.059	
M	0 °	10 °	0 °	10°	
Q_1	0.70	0.90	0.028	0.035	
Z		0.78		0.031	

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 **Phone**: 81–3–5773–3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.