Single 2-Input NAND Gate The MC74HC1G00 is a high speed CMOS 2-input NAND gate fabricated with silicon gate CMOS technology. The internal circuit is composed of multiple stages, including a buffer output which provides high noise immunity and stable output. - High Speed: $t_{PD} = 7$ ns (Typ) at $V_{CC} = 5$ V - Low Power Dissipation: $I_{CC} = 1 \mu A$ (Max) at $T_A = 25$ °C - High Noise Immunity - Balanced Propagation Delays (t_{PLH} = t_{PHL}) - Symmetrical Output Impedance $(I_{OH} = I_{OL} = 2 \text{ mA})$ - Chip Complexity: FETs = 40 - Pb-Free Packages are Available Figure 1. Pinout (Top View) Figure 2. Logic Symbol #### http://onsemi.com | | PIN ASSIGNMENT | | | | | | | |---|-----------------|--|--|--|--|--|--| | 1 | IN B | | | | | | | | 2 | IN A | | | | | | | | 3 | GND | | | | | | | | 4 | OUT ₹ | | | | | | | | 5 | V _{CC} | | | | | | | d = Date Code M = Month Code | Inp | Output | | |-----|--------|---| | A | В | Ŧ | | L | L | Н | | L | Н | Н | | Н | L | Н | | Н | Н | L | **FUNCTION TABLE** #### **ORDERING INFORMATION** See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet. #### **MAXIMUM RATINGS** | Symbol | Parameter | | Value | Unit | |----------------------|--|--|--------------------------|------| | V _{CC} | DC Supply Voltage | | -0.5 to +7.0 | V | | V _{IN} | DC Input Voltage | | -0.5 to $V_{CC} + 0.5$ | V | | V _{OUT} | DC Output Voltage | | -0.5 to $V_{CC} + 0.5$ | V | | I _{IK} | DC Input Diode Current | | ±20 | mA | | I _{OK} | DC Output Diode Current | | ±20 | mA | | I _{OUT} | DC Output Sink Current | | ± 12.5 | mA | | I _{CC} | DC Supply Current per Supply Pin | | ±25 | mA | | T _{STG} | Storage Temperature Range | | -65 to +150 | °C | | TL | Lead Temperature, 1 mm from Case for 10 Seconds | | 260 | °C | | TJ | Junction Temperature Under Bias | | + 150 | °C | | θ_{JA} | Thermal Resistance SC70–5/5 | SC-88A (Note 1)
TSOP-5 | 350
230 | °C/W | | P _D | Power Dissipation in Still Air at 85°C | SC70-5/SC-88A
TSOP-5 | 150
200 | mW | | MSL | Moisture Sensitivity | | Level 1 | | | F _R | Flammability Rating Oxyger | n Index: 28 to 34 | UL 94 V-0 @ 0.125 in | | | V _{ESD} | Machine | Model (Note 2)
e Model (Note 3)
e Model (Note 4) | > 2000
> 200
N/A | V | | I _{LATCHUP} | Latchup Performance Above V _{CC} and Below GND at | 125°C (Note 5) | ±500 | mA | Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected. 1. Measured with minimum pad spacing on an FR4 board, using 10 mm-by-1 inch, 2 ounce copper trace with no air flow. - Tested to EIA/JESD22-A114-A. - Tested to EIA/JESD22-A115-A. - Tested to JESD22-C101-A. - 5. Tested to EIA/JESD78. ## RECOMMENDED OPERATING CONDITIONS | Symbol | Parameter | Min | Max | Unit | |---------------------------------|---|------------------|---------------------------|------| | V _{CC} | DC Supply Voltage | 2.0 | 6.0 | V | | V _{IN} | DC Input Voltage | 0.0 | V _{CC} | V | | V _{OUT} | DC Output Voltage | 0.0 | V _{CC} | V | | T _A | Operating Temperature Range | - 55 | + 125 | °C | | t _r , t _f | Input Rise and Fall Time $ \begin{array}{c} V_{CC} = 2.0 \ V \\ V_{CC} = 3.0 \ V \\ V_{CC} = 4.5 \ V \\ V_{CC} = 6.0 \ V \\ \end{array} $ | 0
0
0
0 | 1000
600
500
400 | ns | ## **DEVICE JUNCTION TEMPERATURE VERSUS TIME TO 0.1% BOND FAILURES** | Junction
Temperature °C | Time, Hours | Time, Years | |----------------------------|-------------|-------------| | 80 | 1,032,200 | 117.8 | | 90 | 419,300 | 47.9 | | 100 | 178,700 | 20.4 | | 110 | 79,600 | 9.4 | | 120 | 37,000 | 4.2 | | 130 | 17,800 | 2.0 | | 140 | 8,900 | 1.0 | Figure 3. Failure Rate vs. Time Junction Temperature ## DC ELECTRICAL CHARACTERISTICS | | | | V _{CC} | 1 | T _A = 25°C | ; | T _A ≤ | 85°C | -55°C ≤ 1 | T _A ≤ 125°C | | |-----------------|--|--|--------------------------|----------------------------|--------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|------| | Symbol | Parameter | Test Conditions | (V) | Min | Тур | Max | Min | Max | Min | Max | Unit | | V _{IH} | Minimum High-Level
Input Voltage | | 2.0
3.0
4.5
6.0 | 1.5
2.1
3.15
4.20 | | | 1.5
2.1
3.15
4.20 | | 1.5
2.1
3.15
4.20 | | V | | V _{IL} | Maximum Low-Level
Input Voltage | | 2.0
3.0
4.5
6.0 | | | 0.5
0.9
1.35
1.80 | | 0.5
0.9
1.35
1.80 | | 0.5
0.9
1.35
1.80 | V | | V _{OH} | Minimum High-Level
Output Voltage
V _{IN} = V _{IH} or V _{IL} | $V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -20 \mu\text{A}$ | 2.0
3.0
4.5
6.0 | 1.9
2.9
4.4
5.9 | 2.0
3.0
4.5
6.0 | | 1.9
2.9
4.4
5.9 | | 1.9
2.9
4.4
5.9 | | V | | | | $V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -2 \text{ mA}$ $I_{OH} = -2.6 \text{ mA}$ | 4.5
6.0 | 4.18
5.68 | 4.31
5.80 | | 4.13
5.63 | | 4.08
5.58 | | | | V _{OL} | Maximum Low-Level
Output Voltage
V _{IN} = V _{IH} or V _{IL} | $V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = 20 \mu\text{A}$ | 2.0
3.0
4.5
6.0 | | 0.0
0.0
0.0
0.0 | 0.1
0.1
0.1
0.1 | .4 | 0.1
0.1
0.1
0.1 | | 0.1
0.1
0.1
0.1 | V | | | | $V_{IN} = V_{IH} \text{ or } V_{IL}$
$I_{OL} = 2 \text{ mA}$
$I_{OL} = 2.6 \text{ mA}$ | 4.5
6.0 | | 0.17
0.18 | 0.26
0. 2 6 | | 0.33
0.33 | | 0.40
0.40 | | | I _{IN} | Maximum Input
Leakage Current | $V_{IN} = 6.0 \text{ V or GND}$ | 6.0 | | 3 | ± 0.1 | | ±1.0 | | ±1.0 | μΑ | | I _{CC} | Maximum Quiescent
Supply Current | $V_{IN} = V_{CC}$ or GND | 6.0 | | | 1.0 | | 10 | | 40 | μΑ | ## AC ELECTRICAL CHARACTERISTICS (Input $t_{\text{r}} = t_{\text{f}} = 6.0 \text{ ns}$) | | | | 1 | T _A = 25°(| С | T _A ≤ | 85°C | -55°C ≤ 1 | T _A ≤ 125°C | | |--------------------|--|---|-----|--------------------------|-----------------------|------------------|-----------------------|---------------------------|------------------------|------| | Symbol | Parameter | Test Conditions | Min | Тур | Max | Min | Max | Min | Max | Unit | | t _{PLH} , | Maximum | $V_{CC} = 5.0 \text{ V}$ $C_L = 15 \text{ pF}$ | | 3.5 | 15 | | 20 | | 25 | ns | | t _{PHL} | Propagation Delay,
Input A or B to \overline{Y} | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | 19
10.5
7.5
6.5 | 100
27
20
17 | | 125
35
25
21 | | 155
90
35
26 | | | t _{TLH} , | Output Transition | $V_{CC} = 5.0 \text{ V}$ $C_L = 15 \text{ pF}$ | | 3 | 10 | | 15 | | 20 | ns | | t _{THL} | Time | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | 25
16
11
9 | 125
35
25
21 | | 155
45
31
26 | | 200
60
38
32 | | | C _{IN} | Maximum Input
Capacitance | | | 5 | 10 | | 10 | | 10 | pF | | | | | | | | Туріс | al @ 25° | °C, V _{CC} = 5.0 | V | | | C _{PD} | Power Dissipation Cap | pacitance (Note 6) | | | | | , | 10 | | pF | ^{6.} C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{CC(OPR)} = C_{PD} \bullet V_{CC} \bullet f_{in} + I_{CC}$. C_{PD} is used to determine the no–load dynamic power consumption; $P_D = C_{PD} \bullet V_{CC}^2 \bullet f_{in} + I_{CC} \bullet V_{CC}$. *Includes all probe and jig capacitance. A 1-MHz square input wave is recommended for propagation delay tests. Figure 4. Switching Waveforms Figure 5. Test Circuit ## **DEVICE ORDERING INFORMATION** | | Device Nomenclature | | | | | | | | |------------------------|-------------------------------|-----------------------------|------------|--------------------|-------------------|----------------------------|--|------------------------------------| | Device Order
Number | Logic
Circuit
Indicator | Temp
Range
Identifier | Technology | Device
Function | Package
Suffix | Tape and
Reel
Suffix | Package
Type | Tape and
Reel Size [†] | | MC74HC1G00DFT1 | МС | 74 | HC1G | 00 | DF | T1 / | SC70-5/SC-88A/
SOT-353 | 178 mm (7 in)
3000 Unit | | MC74HC1G00DFT1G | MC | 74 | HC1G | 00 | DF | TiC | SC70-5/SC-88A/
SOT-353
(Pb-Free) | 178 mm (7 in)
3000 Unit | | MC74HC1G00DFT2 | MC | 74 | HC1G | 00 | DF | T2 | SC70-5/SC-88A/
SOT-353 | 178 mm (7 in)
3000 Unit | | MC74HC1G00DFT2G | MC | 74 | HC1G | 00 | DF | T2 | SC70-5/SC-88A/
SOT-353
(Pb-Free) | 178 mm (7 in)
3000 Unit | | MC74HC1G00DTT1 | MC | 74 | HC1G | 00 | DT | T1 | SOT23-5/TSOP-5/
SC59-5 | 178 mm (7 in)
3000 Unit | | MC74HC1G00DTT1G | MC | 74 | HC1G | 00 | DT | T1 | SOT23-5/TSOP-5/
SC59-5
(Pb-Free) | 178 mm (7 in)
3000 Unit | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ## **PACKAGE DIMENSIONS** ## SC70-5/SC-88A/SOT-353 **DF SUFFIX** 5-LEAD PACKAGE CASE 419A-02 ISSUE G - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. 419A-01 OBSOLETE. NEW STANDARD 419A-02. 4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. | | INC | HES | MILLIM | ETERS | |-----|-------|-------|--------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 0.071 | 0.087 | 1.80 | 2.20 | | В | 0.045 | 0.053 | 1.15 | 1.35 | | С | 0.031 | 0.043 | 0.80 | 1.10 | | D | 0.004 | 0.012 | 0.10 | 0.30 | | G | 0.026 | BSC | 0.65 | BSC | | Н | | 0.004 | | 0.10 | | J | 0.004 | 0.010 | 0.10 | 0.25 | | K | 0.004 | 0.012 | 0.10 | 0.30 | | N | 0.008 | REF | 0.20 | REF | | S | 0.079 | 0.087 | 2.00 | 2.20 | ## **SOLDERING FOOTPRINT*** *For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ## SOT23-5/TSOP-5/SC59-5 **DT SUFFIX** 5-LEAD PACKAGE CASE 483-02 **ISSUE C** #### NOTES - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. A AND B DIMENSIONS DO NOT INCLUDE - MOLD FLASH, PROTRUSIONS, OR GATE BURRS. | | MILLIN | IETERS | INC | HES | |-----|--------|--------|--------|--------| | DIM | MIN | MAX | MIN | MAX | | Α | 2.90 | 3.10 | 0.1142 | 0.1220 | | В | 1.30 | 1.70 | 0.0512 | 0.0669 | | С | 0.90 | 1.10 | 0.0354 | 0.0433 | | D | 0.25 | 0.50 | 0.0098 | 0.0197 | | G | 0.85 | 1.05 | 0.0335 | 0.0413 | | Н | 0.013 | 0.100 | 0.0005 | 0.0040 | | J | 0.10 | 0.26 | 0.0040 | 0.0102 | | K | 0.20 | 0.60 | 0.0079 | 0.0236 | | L | 1.25 | 1.55 | 0.0493 | 0.0610 | | М | 0 | 10 | 0 | 10 | | S | 2.50 | 3.00 | 0.0985 | 0.1181 | *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights or the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death sessociated with such unintended or unauthorized large specifies and for application of the part of the SCILLC is an Equal to the part of the science of th associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. ## **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA **Phone**: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850 ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder For additional information, please contact your local Sales Representative