2N3903 is a Preferred Device

General Purpose Transistors

NPN Silicon

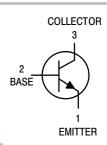
Features

• Pb-Free Packages are Available*

Rating	Symbol	Value	Unit
Collector - Emitter Voltage	V _{CEO}	40	Vdc
Collector - Base Voltage	V _{CBO}	60	Vdc
Emitter – Base Voltage	V _{EBO}	6.0	Vdc
Collector Current – Continuous	I _C	200	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	P _D	625 5.0	mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	1.5 12	W mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

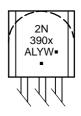
THERMAL CHARACTERISTICS (Note 1)

Characteristic		Symbol	Max	Unit
Thermal Resistance, Junction-to-	Ambient	$R_{\theta JA}$	200	°C/W
Thermal Resistance, Junction-to-	$R_{\theta,IC}$	83.3	°C/W	


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Indicates Data in addition to JEDEC Requirements.

ON Semiconductor®


http://onsemi.com

MARKING DIAGRAMS

x = 3 or 4

A = Assembly Location

L = Wafer Lot Y = Year

W = Work Week
■ Pb-Free Package

(Note: Microdot may be in either location)

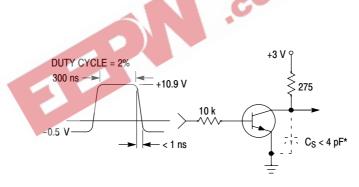
ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.

Preferred devices are recommended choices for future use and best overall value.

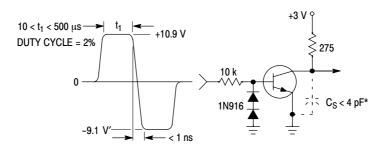
^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)


	Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERIS	OFF CHARACTERISTICS					
Collector - Emitter Br	eakdown Voltage (Note 2) ($I_C = 1.0 \text{ mAdc}, I_B =$	0)	V _{(BR)CEO}	40	-	Vdc
Collector - Base Brea	akdown Voltage (I _C = 10 μAdc, I _E = 0)		V _{(BR)CBO}	60	-	Vdc
Emitter – Base Break	down Voltage ($I_E = 10 \mu Adc, I_C = 0$)		V _{(BR)EBO}	6.0	-	Vdc
Base Cutoff Current	(V _{CE} = 30 Vdc, V _{EB} = 3.0 Vdc)		I _{BL}	-	50	nAdc
Collector Cutoff Curr	ent (V _{CE} = 30 Vdc, V _{EB} = 3.0 Vdc)		I _{CEX}	-	50	nAdc
ON CHARACTERIST	rics					
DC Current Gain (No (I _C = 0.1 mAdc, V _{CE}		2N3903	h _{FE}	20	_	-
$(I_C = 1.0 \text{ mAdc}, V_{CE})$	= 1.0 Vdc)	2N3904 2N3903		40 35	-	
$(I_C = 10 \text{ mAdc}, V_{CE} =$	= 1.0 Vdc)	2N3904 2N3903 2N3904		70 50 100	150 300	
$(I_C = 50 \text{ mAdc}, V_{CE} =$	= 1.0 Vdc)	2N3903		30	-	
$(I_C = 100 \text{ mAdc}, V_{CE})$	= 1.0 Vdc)	2N3904 2N3903 2N3904	.0	60 15 30	_ _ _	
Collector – Emitter Sa ($I_C = 10 \text{ mAdc}, I_B = 1$ ($I_C = 50 \text{ mAdc}, I_B = 5$	aturation Voltage (Note 2) .0 mAdc) 5.0 mAdc	. %	V _{CE(sat)}	- -	0.2 0.3	Vdc
Base – Emitter Satura ($I_C = 10 \text{ mAdc}, I_B = 1$ ($I_C = 50 \text{ mAdc}, I_B = 5$		TO Y	V _{BE(sat)}	0.65 -	0.85 0.95	Vdc
SMALL-SIGNAL CH	IARACTERISTICS	10				
Current-Gain - Ban (I _C = 10 mAdc, V _{CE} =	dwidth Product = 20 Vdc, f = 100 MHz)	2N3903 2N3904	f _⊤	250 300		MHz
Output Capacitance	$(V_{CB} = 5.0 \text{ Vdc}, l_E = 0, f = 1.0 \text{ MHz})$		C _{obo}	_	4.0	pF
Input Capacitance (V	(EB = 0.5 Vdc, I _C = 0, f = 1.0 MHz)		C _{ibo}	-	8.0	pF
Input Impedance (I _C = 1.0 mAdc, V _{CE}	= 10 Vdc, f = 1.0 kHz)	2N3903 2N3904	h _{ie}	1.0 1.0	8.0 10	kΩ
Voltage Feedback Ra (I _C = 1.0 mAdc, V _{CE}	atio = 10 Vdc, f = 1.0 kHz)	2N3903 2N3904	h _{re}	0.1 0.5	5.0 8.0	X 10 ⁻⁴
Small–Signal Curren ($I_C = 1.0 \text{ mAdc}, V_{CE}$	t Gain = 10 Vdc, f = 1.0 kHz)	2N3903 2N3904	h _{fe}	50 100	200 400	_
Output Admittance (I	C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)		h _{oe}	1.0	40	μmhos
Noise Figure (I _C = 100 μ Adc, V _{CE}	= 5.0 Vdc, R_S = 1.0 k Ω, f = 1.0 kHz)	2N3903 2N3904	NF	- -	6.0 5.0	dB
SWITCHING CHARA	ACTERISTICS					
Delay Time	(V _{CC} = 3.0 Vdc, V _{BE} = 0.5 Vdc,		t _d	_	35	ns
Rise Time	I _C = 10 mAdc, I _{B1} = 1.0 mAdc)		t _r	-	35	ns
Storage Time	$(V_{CC} = 3.0 \text{ Vdc}, I_{C} = 10 \text{ mAdc}, I_{B1} = I_{B2} = 1.0 \text{ mAdc})$	2N3903 2N3904	t _s	- -	175 200	ns
Fall Time			t _f	_	50	ns

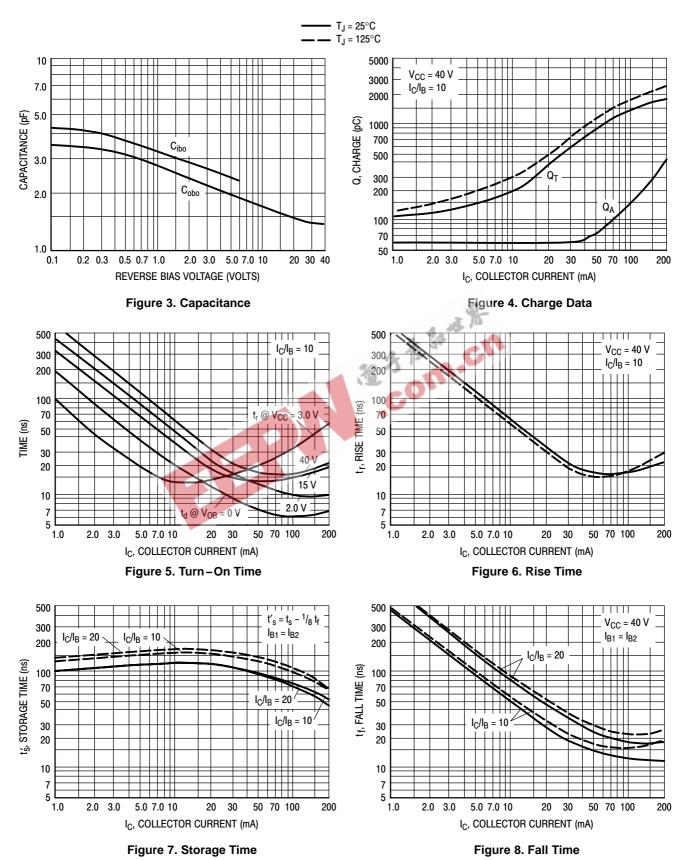
^{2.} Pulse Test: Pulse Width \leq 300 μ s; Duty Cycle \leq 2%.

ORDERING INFORMATION


Device	Package	Shipping [†]
2N3903RLRM	TO-92	2000 / Ammo Pack
2N3904	TO-92	5000 Units / Bulk
2N3904G	TO-92 (Pb-Free)	5000 Units / Bulk
2N3904RLRA	TO-92	2000 / Tape & Reel
2N3904RLRAG	TO-92 (Pb-Free)	2000 / Tape & Reel
2N3904RLRM	TO-92	2000 / Ammo Pack
2N3904RLRMG	TO-92 (Pb-Free)	2000 / Ammo Pack
2N3904RLRP	TO-92	2000 / Ammo Pack
2N3904RLRPG	TO-92 (Pb-Free)	2000 / Ammo Pack
2N3904RL1G	TO-92 (Pb-Free)	2000 / Tape & Reel
2N3904ZL1	TO-92 2000 / Ammo Pack	
2N3904ZL1G	TO-92 (Pb-Free)	2000 / Ammo Pack

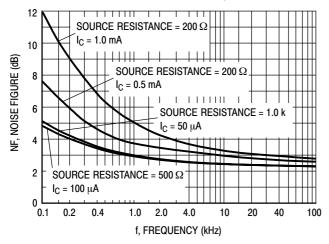
[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*} Total shunt capacitance of test jig and connectors


Figure 1. Delay and Rise Time Equivalent Test Circuit

^{*} Total shunt capacitance of test jig and connectors

Figure 2. Storage and Fall Time Equivalent Test Circuit


TYPICAL TRANSIENT CHARACTERISTICS

http://onsemi.com

TYPICAL AUDIO SMALL-SIGNAL CHARACTERISTICS NOISE FIGURE VARIATIONS

 $(V_{CE} = 5.0 \text{ Vdc}, T_A = 25^{\circ}\text{C}, Bandwidth = 1.0 \text{ Hz})$

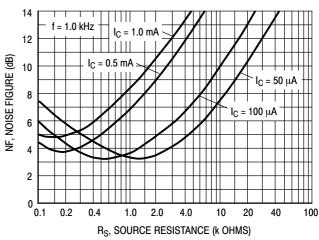
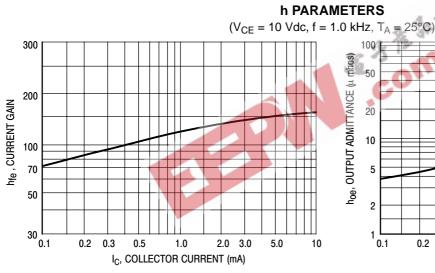



Figure 9.

Figure 10.

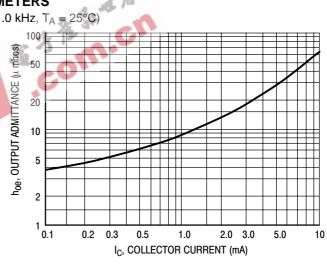
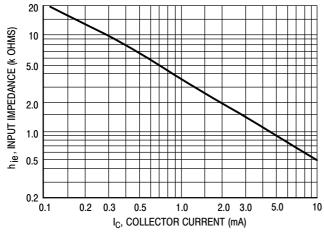



Figure 11. Current Gain

Figure 12. Output Admittance

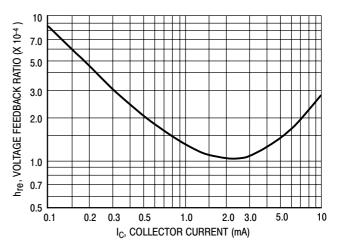


Figure 14. Voltage Feedback Ratio

TYPICAL STATIC CHARACTERISTICS

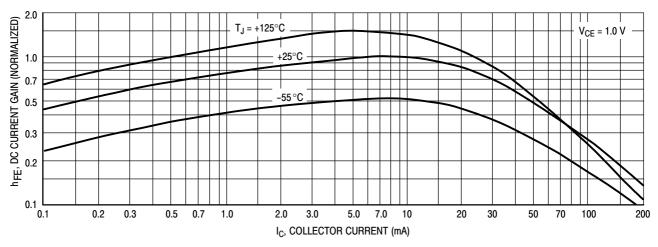


Figure 15. DC Current Gain

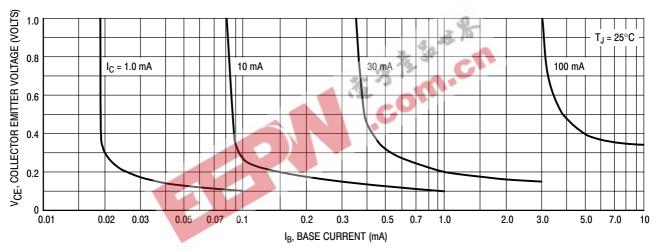


Figure 16. Collector Saturation Region

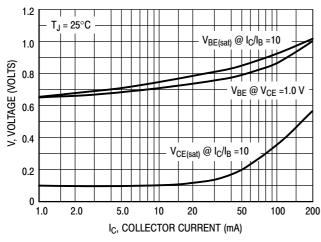


Figure 17. "ON" Voltages

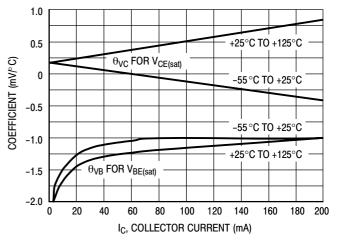
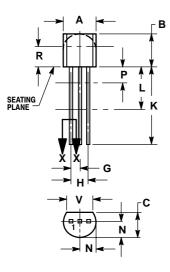
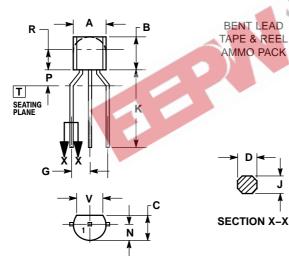



Figure 18. Temperature Coefficients

PACKAGE DIMENSIONS

TO-92 (TO-226) CASE 29-11 **ISSUE AM**


STRAIGHT LEAD **BULK PACK**

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: INCH.
 CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED.
- LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

		INCHES		MILLIMETERS	
	DIM	MIN	MAX	MIN	MAX
	Α	0.175	0.205	4.45	5.20
	В	0.170	0.210	4.32	5.33
	С	0.125	0.165	3.18	4.19
	D	0.016	0.021	0.407	0.533
	G	0.045	0.055	1.15	1.39
	Н	0.095	0.105	2.42	2.66
	J	0.015	0.020	0.39	0.50
	K	0.500		12.70	
	L	0.250		6.35	
	N	0.080	0.105	2.04	2.66
,	P		0.100		2.54
(R	0.115	and the second	2.93	
	V	0.135		3.43	
多为节		·C	n		
	NOTES	-			
	1. DI	MENSION	IING AND	TOI FRAI	NCING P

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS.
- CONTOUR OF PACKAGE BEYOND
 DIMENSION R IS UNCONTROLLED.
 LEAD DIMENSION IS UNCONTROLLED IN P
- AND BEYOND DIMENSION K MINIMUM

	MILLIMETERS		
DIM	MIN	MAX	
Α	4.45	5.20	
В	4.32	5.33	
С	3.18	4.19	
D	0.40	0.54	
G	2.40	2.80	
J	0.39	0.50	
K	12.70		
N	2.04	2.66	
P	1.50	4.00	
R	2.93	-	
٧	3.43		

STYLE 1:

PIN 1. EMITTER

COLLECTOR

ON Semiconductor and up are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice ON Semiconductor and war registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights or the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized large steps SCILLC is an Equal to the desiring or manufacture of the party of t associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5773–3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative