

Type 2N3506
Geometry 1506
Polarity NPN

Qual Level: JAN - JANTXV

Generic Part Number: 2N3506

REF: MIL-PRF-19500/349

Features:

 General-purpose silicon transistor for switching and amplifier applications.

- Housed in TO-39 case.
- Also available in chip form using the 1506 chip geometry.
- The Min and Max limits shown are per MIL-PRF-19500/349 which Semicoa meets in all cases.

Request Quotation

Maximum Ratings

 $T_C = 25^{\circ}C$ unless otherwise specified

Rating	Symbol	Rating	Unit	
Collector-Emitter Voltage	V_{CEO}	40	٧	
Collector-Base Voltage	V_{CBO}	60	V	
Emitter-Base Voltage	V_{EBO}	5.0	V	
Collector Current, Continuous	I _C	3.0	А	
Power Dissipation, T _A = 25°C	P_{T}	1.0	W	
Derate above 25°C	·	5.71	mW/°C	
Operating Junction Temperature	T_J	-65 to +200	°C	
Storage Temperature	T _{STG}	-65 to +200	°C	

Electrical Characteristics

 $T_C = 25^{\circ}C$ unless otherwise specified

OFF Characteristics	Symbol	Min	Max	Unit
Collector-Base Breakdown Voltage	$V_{(BR)CBO}$	60		٧
$I_C = 10 \mu\text{A}$	(BR)CBO			•
Collector-Emitter Breakdown Voltage	$V_{(BR)CEO}$	40		V
I _C = 10 mA Emitter-Base Breakdown Voltage	, ,			
I _F = 10 µA	$V_{(BR)EBO}$	5.0		V
Collector-Emitter Cutoff Current				
$V_{CE} = 40 \text{ V}, V_{EB} = 4 \text{ V}$	CEX1		1.0	μA
Collector-Emitter Cutoff Current	1		4.0	Δ.
$V_{CE} = 40 \text{ V}, V_{EB} = 4 \text{ V}, T_A = +150^{\circ}\text{C}$	I _{CEX2}		1.0	μΑ
Collector Current Continuous	I _C	3.0		А
$V_{CB} = 50 \text{ V}$	ıC	3.0		
ON Characteristics	Symbol	Min	Max	Unit
DC Current Gain		4.57		
$I_C = 500 \text{ mA}, V_{CE} = 1 \text{ V (pulsed)}$	h _{FE1}	50	250	
$I_C = 1.5 \text{ A}, V_{CE} = 2 \text{ V (pulsed)}$	h _{FE2}	40	200	
$I_C = 2.5 \text{ A}, V_{CE} = 3 \text{ V (pulsed)}$	h _{FE3}	30		
$I_C = 3.0 \text{ A}, V_{CE} = 5 \text{ V (pulsed)}$	h _{FE4}	25		
$I_C = 500 \text{ mA}, V_{CE} = 1 \text{ V (pulsed)}, T_A = -55^{\circ}\text{C}$	h _{FE5}	25		
Base-Emitter Saturation Voltage				
$I_C = 500 \text{ mA}, I_B = 50 \text{ mA (pulsed)}$	V _{BE(sat)1}		1.0	V dc
$I_C = 1.5 \text{ A}, I_B = 150 \text{ mA (pulsed)}$	V _{BE(sat)2}	0.9	1.4	V dc
$I_C = 2.5 \text{ A}, I_B = 250 \text{ mA (pulsed)}$	V _{BE(sat)3}		2.0	V dc
Collector-Emitter Saturation Voltage	\ \/		0.5	\
$I_C = 500 \text{ mA}, I_B = 50 \text{ mA (pulsed)}$	V _{CE(sat)1}		0.5	V dc
$I_C = 1.5 \text{ A}, I_B = 150 \text{ mA (pulsed)}$	V _{CE(sat)2}		1.0	V dc
$I_C = 2.5 \text{ A}, I_B = 250 \text{ mA (pulsed)}$	V _{CE(sat)3}		1.5	V dc
Small Signal Characteristics	Symbol	Min	Max	Unit
Magnitude of Common Emitter, Small Signal, Short Circuit Forward Current Transfer Ratio	 h _{FE}	3.0	15	
$V_{CE} = 5 \text{ V, } I_{C} = 100 \text{ mA, } f = 20 \text{ MHz}$	וברייו ו	3.0	15	
Open Circuit Output Capacitance	0			_
$V_{CB} = 10 \text{ V}, I_{E} = 0, 100 \text{ kHz} < f < 1 \text{ MHz}$	C _{OBO}		40	pF
Input Capacitance, Output Open Circuited	C		300	ηE
$V_{EB} = 3 \text{ V}, I_{C} = 0, 100 \text{ kHz} < f < 1 \text{ MHz}$	C _{IBO}		300	pF
Pulse Response Characteristics	Symbol	Min	Max	Unit
Delay Time	t _d		15	ns
$I_C = 1.5 \text{ A}, I_{B1} = 150 \text{ mA}$	٩		10	110
Rise Time	t _r		30	ns
I _C = 1.5 A, I _{B1} = 150 mA	,			
Storage Time $I_C = 1.5 \text{ mA}, I_{B2} = I_{B1} = 150 \text{ mA}$	t _s		55	ns
$I_C = 1.5 \text{ H/A}, I_{B2} = I_{B1} = 150 \text{ H/A}$ Fall Time				
$I_C = 1.5 \text{ mA}, I_{B2} = I_{B1} = 150 \text{ mA}$	t _f		35	ns
-C	<u> </u>	ļ	ļ.	