## 2N3019DCSM

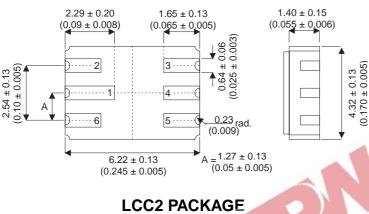


## DUAL HIGH FREQUENCY NPN TRANSISTORS IN A HERMETICALLY SEALED CERAMIC SURFACE MOUNT PACKAGE FOR HIGH RELIABILITY APPLICATIONS

# FEATURES

- SILICON PLANAR EPITAXIAL NPN TRANSISTOR
- HERMETIC CERAMIC SURFACE MOUNT
  PACKAGE
- CECC SCREENING OPTIONS AVAILABLE
- SPACE QUALITY LEVELS AVAILABLE
- HIGH SPEED SATURATED SWITCHING

## **APPLICATIONS:**


For high reliablitity general purpose applications requiring small size and low weight devices.

| ABSOLUTE              | <b>MAXIMUM RATINGS</b> ( $T_c = 25^{\circ}C$ unless otherwise stated) | Per Side       | Total Device |  |
|-----------------------|-----------------------------------------------------------------------|----------------|--------------|--|
| V <sub>CBO</sub>      | Collector – Base Voltage                                              | 140V           |              |  |
| V <sub>CEO</sub>      | Collector – Emitter Voltage                                           | 80V            |              |  |
| V <sub>EBO</sub>      | Emitter – Base Voltage                                                | 7V             |              |  |
| I <sub>C</sub>        | Collector Current                                                     | 1A             |              |  |
| PD                    | Power Dissipation                                                     | 350mW          | 500mW        |  |
| PD                    | Derate above 50°C                                                     | 2.33mW / °C    | 3.33mW / °C  |  |
| $R_{	extsf{	heta}JA}$ | Thermal Resistance Junction to Ambient                                | 429°C / W      | 300°C / W    |  |
| Тj                    | Max Junction Temperature                                              | 200°C          |              |  |
| T <sub>stg</sub>      | Storage Temperature                                                   | –55°C to 200°C |              |  |

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612. E-mail: <u>sales@semelab.co.uk</u> Website: <u>http://www.semelab.co.uk</u>

MECHANICAL DATA Dimensions in mm (inches)



#### LCC2 PACKAGE (MO-041BB)

**Underside View** 


PAD 1 – Collector 1

PAD 2 – Base 1

PAD 3 – Base 2

PAD 5 – Emitter 2 PAD 6 – Emitter 1

PAD 4 – Collector 2



# 2N3019DCSM

## ELECTRICAL CHARACTERISTICS (T<sub>case</sub> = 25°C unless otherwise stated)

|                       | Parameter                              | Test Conditions                                      | Min. | Тур. | Max. | Unit |
|-----------------------|----------------------------------------|------------------------------------------------------|------|------|------|------|
| V <sub>(BR)CEO*</sub> | Collector – Emitter BreakdownVoltage   | $I_{\rm C} = 10 {\rm mA}$ $I_{\rm B} = 0$            | 80   |      |      | V    |
| V <sub>(BR)CBO*</sub> | Collector – Base Breakdown Voltage     | $I_{\rm C} = 100 \mu {\rm A}$ $I_{\rm E} = 0$        | 140  |      |      | V    |
| V <sub>(BR)EBO*</sub> | Emitter – Base Breakdown Voltage       | $I_{E} = 100 \mu A$ $I_{C} = 0$                      | 7    |      |      | V    |
| I <sub>CBO</sub>      | Collector Cut-off Current              | $V_{CB} = 90V$ $V_{BE} = 0$                          |      |      | 10   | nA   |
|                       |                                        | T <sub>amb</sub> = 150°C                             |      |      | 10   | μΑ   |
| I <sub>EBO</sub>      | Emitter Cut-off Current                | V <sub>EB</sub> = 5V                                 |      |      | 10   | nA   |
| V <sub>CE(sat)*</sub> | Collector – Emitter Saturation Voltage | I <sub>C</sub> = 150mA I <sub>B</sub> = 15mA         |      |      | 0.20 |      |
|                       |                                        | $I_{\rm C} = 500 {\rm mA}$ $I_{\rm B} = 50 {\rm mA}$ |      |      | 0.50 | V    |
| V <sub>BE(sat)*</sub> | Base – Emitter Saturation Voltage      | I <sub>C</sub> = 150mA I <sub>B</sub> = 15mA         |      |      | 1.1  |      |
| h <sub>FE⁺</sub>      | DC Current Gain                        | $I_{C} = 0.1 \text{mA}$ $V_{CE} = 10 \text{V}$       | 50   |      |      |      |
|                       |                                        | I <sub>C</sub> = 10mA V <sub>CE</sub> = 10V          | 90   |      |      |      |
|                       |                                        | I <sub>C</sub> = 150mA V <sub>CE</sub> = 10V         | 100  |      | 300  |      |
|                       |                                        | T <sub>amb</sub> = -55°C                             | 40   |      |      |      |
|                       |                                        | I <sub>C</sub> = 500mA V <sub>CE</sub> = 10V         | 50   |      |      |      |
|                       |                                        | $I_{\rm C} = 1$ A $V_{\rm CE} = 10$ V                | 15   |      |      |      |
|                       |                                        |                                                      |      |      |      |      |

\* Pulse test  $t_p$  = 300 $\mu s$  ,  $\delta \leq 2\%$ 

## **DYNAMIC CHARACTERISTICS** (T<sub>case</sub> = 25°C unless otherwise stated)

|                  | Parameter                 | Test Conditions        |                  |            | Min. | Тур. | Max. | Unit |
|------------------|---------------------------|------------------------|------------------|------------|------|------|------|------|
| f <sub>T</sub>   | Transition Frequency      | I <sub>C</sub> = 50mA  | $V_{CE} = 10V$   | f = 20MHz  | 100  |      |      | MHz  |
| C <sub>EBO</sub> | Capacitance               | $V_{EB} = 0.5V$        | $I_{\rm C} = 0$  | f = 1.0MHz |      |      | 60   | pF   |
| C <sub>CBO</sub> | Input Capacitance         | V <sub>CB</sub> = 10V  | $I_E = 0$        | f = 1.0MHz |      |      | 12   | pF   |
| h <sub>fe</sub>  | Small Signal Current Gain | I <sub>C</sub> = 1mA   | $V_{CE} = 5V$    | f = 1kHz   | 80   |      | 400  | —    |
| NF               | Noise Figure              | I <sub>C</sub> = 100μA | $V_{CE} = 10V$   | f = 1kHz   |      |      | 4    | dB   |
|                  |                           |                        | $R_g = 1K\Omega$ |            |      |      |      |      |

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.