

7516 Central Industrial Drive Riviera Beach, Florida 33404 PHONE: (561) 842-0305 FAX: (561) 845-7813

Deflection Circuits

DC-DC Converters

High Voltage Amplifiers

High Current: 2 Amps

Low V_{CE (SAT)}

APPLICATIONS:

- Off-Line Inverters
- Switching Regulators
- Motor Controls

FEATURES:

- High Voltage: 250 to 500V
- Fast Switching: $t_f < 3\mu$ sec.
- High Power: 35 Watts

DESCRIPTION:

These power transistors are produced by PPC's DOUBLE DIFFUSED PLANAR process. This technology produces high voltage devices with excellent switching speeds, frequency response, gain linearity, saturation voltages, high current gain, and safe operating areas. They are intended for use in Commercial, Industrial, and Military power switching, amplifier, and regulator applications.

Ultrasonically bonded leads and controlled die mount techniques are utilized to further increase the SOA capability and inherent reliability of these devices. The temperature range to 200°C permits reliable operation in high ambients, and the hermetically sealed package insures maximum reliability and long life.

то-66

ABSOLUTE MAXIMUM RATINGS:

SYMBOL	CHARACTERISTIC	VALUE	UNITS	
V _{CBO} *	Collector-Base Voltage	375	Volts	
V _{CEO} *	Collector-Emitter Voltage	250	Volts	
V _{CER} *	Collector-Emitter Voltage $R_{BE} = 50\Omega$	300	Volts	
V _{EBO} *	Emitter-Base Voltage	6	Volts	
lc*	Peak Collector Current	5	Amps	
l _c *	Continuous Collector Current	2	Amps	
l _B *	Base Current	1	Amps	
T _{STG} *	Storage Temperature	-65 to 200	°C	
T _J *	Operating Junction Temperature	-65 to 200	°C	
*	Lead Temperature 1/16" from Case for 10 Sec.	235	°C	
P _T *	Power Dissipation			
	T _C = 25°C	35	Watts	
θJC	Thermal Impedance	5.0	°C/W	

* Indicates JEDEC registered data.

2N3584

5 Amp, 375V, High Voltage NPN Silicon Power Transistors

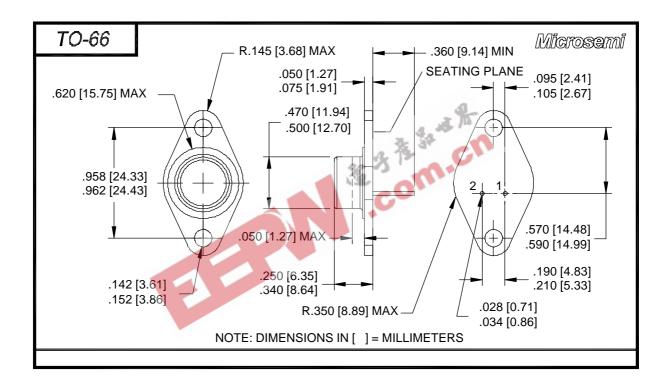
2N3584

ELECTRICAL CHARACTERISTICS:

(25°Case Temperature Unless Otherwise Noted)

		/			1
SYMBOL	CHARACTERISTIC	TEAT CONDITIONS	VA	VALUE	
		TEST CONDITIONS	Min.	Max.	Units
V _{CEO(sus)*}	Collector-Emitter Sustaining Voltage	$I_{\rm C}$ = 0.2 Amp (Notes 1 and 2)	250		Volts
$\mathbf{V}_{\text{CER(sus)}}$	Collector-Emitter Sustaining Voltage	$I_{\rm C}$ = 0.2A, $R_{\rm BE}$ = 50 Ω (Notes 1 and 2)	300		Volts
I _{CEV*}	Collector Cutoff Current	V _{CE} = 340V, V _{BE} = -1.5V		1.0	mA.
I _{CEV} *	Collector Cutoff Current T _c = 150°C	$V_{CE} = 300V, V_{BE} = -1.5V$ $V_{CE} = 150V, I_B = 0$ $V_{EB} = 6V, I_C = 0$ $I_C = 0.1A, V_{CE} = 10V$ $I_C = 1.0A, V_{CE} = 10V$		3.0	mA.
I _{CEO*}	Collector Cutoff Current	$V_{CE} = 150V, I_B = 0$		5.0	mA.
I _{EB0*}	Emitter Cutoff Current	$V_{EB} = 6V, I_{C} = 0$		0.5	mA.
h _{FE} *	DC Forward Current	$I_{\rm C} = 0.1 {\rm A}, V_{\rm CE} = 10 {\rm V}$	40		
	Transfer Ratio	$I_{\rm C} = 1.0 {\rm A}, V_{\rm CE} = 10 {\rm V}$	25	100	
	(Note 1)	$I_{\rm C} = 1.0$ A, $V_{\rm CE} = 2$ V	8	80	
V _{CE(sat)} *	Collector-Emitter Saturation Voltage (Note 1)	I _C = 1.0A, I _B = 0.125A		0.75	Volts
V _{BE(sat)} *	Base-Emitter Saturation Voltage (Note 1)	I _C = 1.0A, I _B = 0.10A		1.4	Volts
I _{S/b}	Second-Breakdown Collector Current (with base forward biased)	V _{CE} = 100V, t = 1.0sec.	0.35		A
E _{S/b}	Second-Breakdown Energy (with base reverse biased)	$V_{EB} = 4V, \ R_{BE} = 20\Omega, \ L = 100\mu h$	200		μJ
h _{fe} *	Common-Emitter Small- Signal Forward Current Transfer Ratio	V _{CE} = 10V, I _C = 0.2A, f = 5 MHz	3		
h _{fe} *	Common-Emitter Small- Signal Forward Current Transfer Ratio, f = 5 MHz	V _{CE} = 10V, I _C = 0.2A	2.0		
C _{Ob} *	Collector-Base Capacitance	$V_{CB} = 10V, I_E = 0, f = 1.0MHz$		120	pf
tr*	Rise Time	$V_{CC} = 200V, I_C = 1.0A, I_{B2} = 0.10A$		3.0	μsec.
ts*	Storage Time	V_{CC} = 200V, I_{C} = 1.0A, I_{B1} = I_{B2} = 0.10A		4.0	μsec.
tf*	Fall Time	$V_{CC} = 200V, I_C = 1.0A, I_{B1} = I_{B2} = 0.10A$		3.0	μSec.

Note 1: Pulse Test: Pulse width = 300μ Sec., Rep. Rate 60Hz.


Note 2: Caution - Do not use Curve Tracer.

* Indicates JEDEC registered data.

2N3584

PACKAGE MECHANICAL DATA:

