

PNP SILICON TRANSISTOR 2SA1625

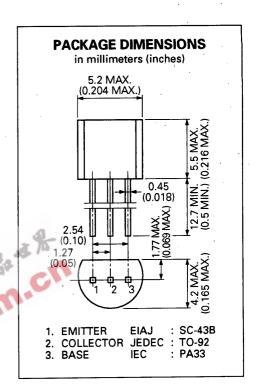
DESCRIPTION

The 2SA1625 is designed for general purpose amplifier and high speed switching applications.

FEATURES

- High Voltage.
- High Speed Switching.
- Low Collector Saturation Voltage.

QUALITY GRADE


Standard

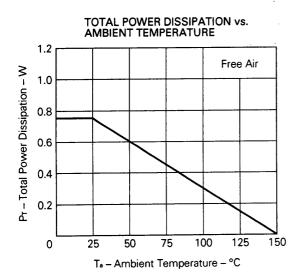
Please refer to "Quality grade on NEC Semiconductor Devices" (Document number IEI-1209) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

ABSOLUTE MAXIMUM RATINGS (Ta = 25 °C)

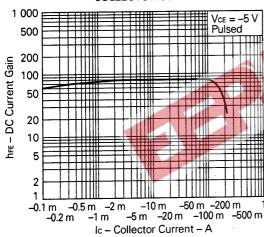
Collector to Base Voltage	Vсво	-400	V
Collector to Emitter Voltage	VCEO	-400	V .
Emitter to Base Voltage	VEBO	-7.0	V
Collector Current (DC)	lç	-0.5	Α
Collector Current (pulse)*	lc	-1.0	Α
Total Power Dissipation	Рт	750	mW
Junction Temperature	Tj	150	°C
Storage Temperature	Tstg	-55 to +150	°C

^{*} PW ≦ 2 ms, Duty Cycle ≦ 50 %

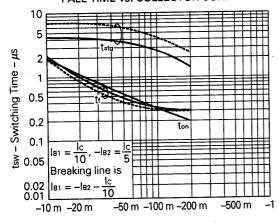
ELECTRICAL CHARACTERISTICS (Ta = 25 °C)

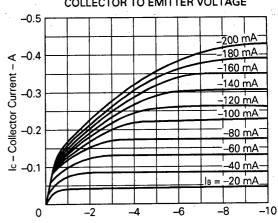

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS	
Turn-on Time	ton		0.3	1.0	μs	$lc = -100$ mA, $R_L = 1.5$ kΩ,	
Storage Time	tetg		4.0	5.0	μs	$l_{B1} = -10 \text{ mA}, l_{B2} = 10 \text{ mA},$	
Fall-Time	tr		0.3	1.0	μs	Vcc ≑ − 150 V PW = 50 μs, Duty Cycle ≦ 2 %	
Gain Bandwidth Product	fτ	. 20	40		MHz	VcE = -10 V, IE = 10 mA	
Output Capacitance	Соь		17	20	pF	VcB = -10 V, IE = 0, f = 1 MHz	
DC Current Gain	hre**	40	80	200	_	VcE = -5.0 V, lc = -50 mA	
Collector Saturation Voltage	VCE(sat)**		0.35	0.5	V	lc = -0.1 A, I _B = -10 mA	
Base Saturation Voltage	VBE(sat) ##		-0.80	-1.2	V	Ic = -0.1 A, IB = -10 mA	
Collector Cutoff Current	Ісво			10	μА	VcB = -400 V, IE = 0	
Emitter Cutoff Current	lebo			10	μА	VEB = -5.0 V, Ic = 0	
Collector to Emitter Voltage	VCEO	-400			v	lc = -1.0 mA, R _{BE} = ∞	

^{**} Pulsed PW \leq 350 μ s, Duty Cycle \leq 2 %

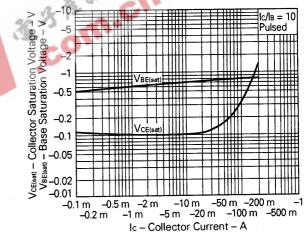

Classification of hee

Rank	M	L	К
Range	40 to 80	60 to 120	100 to 200


TYPICAL CHARACTERISTICS (Ta = 25 °C)



TURN ON TIME, STORAGE TIME AND FALL TIME vs. COLLECTOR CURRENT


Ic - Collector Current - A

COLLECTOR CURRENT vs. COLLECTOR TO EMITTER VOLTAGE

VcE - Collector to Emitter Voltage - V

BASE AND COLLECTOR SATURATION VOLTAGE VS. COLLECTOR CURRENT

REFERENCE APPLICATION NOTE

ASSEMBLY MANUAL FOR SEMICONDUCTOR DEVICES	IEI-1207
QUALITY CONTROL OF NEC SEMICONDUCTOR DEVICES	TEI-1202
QUALITY CONTROL GUIDE OF SEMICONDUCTOR DEVICES	MEI-1202

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

The devices listed in this document are not suitable for use in aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. If customers intend to use NEC devices for above applications or they intend to use "Standard" quality grade NEC devices for applications not intended by NEC, please contact our sales people in advance.

Application examples recommended by NEC Corporation.

Standard: Computer, Office equipment, Communication equipment, Test and Measurement equipment, Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc.

Special: Automotive and Transportation equipment, Traffic control systems, Antidisaster systems, Anticrime systems, etc.

M4 92.6