
INTEGRATED CIRCUITS

Product specification IC23 Data Handbook 1996 Sep 30

PHILIPS

74ABT2241

FEATURES

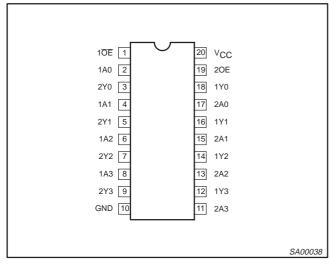
- Octal bus interface
- 3-State buffers
- Power-up 3-State
- Output capability: +12mA/-32mA
- Latch-up protection exceeds 500mA per Jedec Std 17
- ESD protection exceeds 2000 V per MIL STD 883 Method 3015 and 200 V per Machine Model

DESCRIPTION

The 74ABT2241 high-performance BiCMOS device combines low static and dynamic power dissipation with high speed and high output drive.

The 74ABT2241 device is an octal buffer that is ideal for driving bus lines. The device features two Output Enables (10E, 20E), each controlling four of the 3-State outputs.

The 74ABT2241 is designed with 30Ω series resistance in both the High and Low states of the output. The design reduces line noise in applications such as memory address drivers, clock drivers, and bus receivers/transceivers.

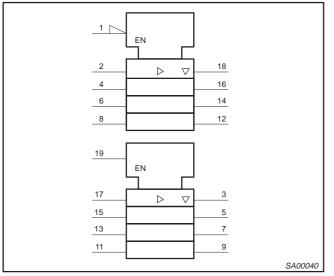

QUICK REFERENCE DATA

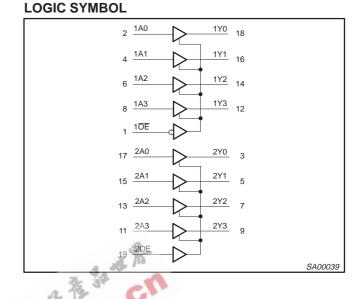
SYMBOL	PARAMETER	CONDITIONS T _{amb} = 25°C; GND = 0V	TYPICAL	UNIT				
t _{PLH} t _{PHL}	Propagation delay An to Yn	$C_L = 50 pF; V_{CC} = 5V$	2.9	ns				
C _{IN}	Input capacitance	$V_{I} = 0V \text{ or } V_{CC}$	3	pF				
C _{OUT}	Output capacitance	Outputs disabled; $V_0 = 0V$ or V_{CC}	7	pF				
I _{CCZ}	Total supply current	Outputs disabled; V _{CC} = 5.5V	50	μΑ				
ORDERING	ORDERING INFORMATION							

ORDERING INFORMATION

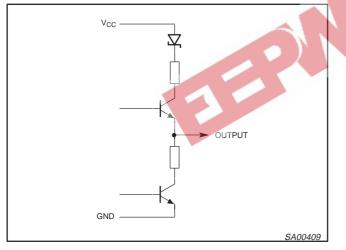
PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	DWG NUMBER
20-Pin Plastic DIP	-40°C to +85°C	74ABT2241 N	74ABT2241 N	SOT146-1
20-Pin plastic SO	-40°C to +85°C	74ABT2241 D	74ABT2241 D	SOT163-1
20-Pin Plastic SSOP Type II	-40°C to +85°C	74ABT2241 DB	74ABT2241 DB	SOT339-1
20-Pin Plastic TSSOP Type I	-40°C to +85°C	74ABT2241 PW	7ABT2241PW DH	SOT360-1

PIN CONFIGURATION




PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION			
2, 4, 6, 8	1A0 – 1A3	Data inputs			
17, 15, 13, 11	2A0 – 2A3	Data inputs			
18, 16, 14, 12	1Y0 – 1Y3	Data outputs			
3, 5, 7, 9	2Y0 – 2Y3	Data outputs			
1, 19	1 <u>0E</u> , 20E	Output enables			
10	GND	Ground (0V)			
20	V _{CC}	Positive supply voltage			


74ABT2241

LOGIC SYMBOL (IEEE/IEC)

SCHEMATIC OF EACH OUTPUT

FUNCTION TABLE

C	INPU	OUTF	PUTS		
10E	1An	20E	2An	1Yn	2Yn
L	L	Н	L	L	L
L	н	н	н	н	н
н	х	L	х	Z	Z

Н = High voltage level

L = Low voltage level

= Don't care Х

Ζ = High impedance "off" state

ABSOLUTE MAXIMUM RATINGS^{1, 2}

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to +7.0	V
I _{IK}	DC input diode current	V ₁ < 0	-18	mA
VI	DC input voltage ³		-1.2 to +7.0	V
I _{OK}	DC output diode current	V _O < 0	-50	mA
V _{OUT}	DC output voltage ³	output in Off or High state	-0.5 to +5.5	V
I _{OUT}	DC output current	output in Low state	128	mA
T _{stg}	Storage temperature range		-65 to 150	°C

NOTES:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction

temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed 150°C.

3. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

74ABT2241

RECOMMENDED OPERATING CONDITIONS

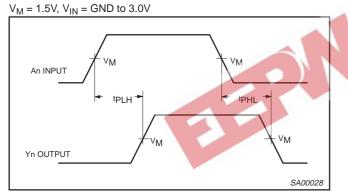
SYMBOL	PARAMETER	LIM	UNIT	
		Min	Max	
V _{CC}	DC supply voltage	4.5	5.5	V
VI	Input voltage	0	V _{CC}	V
V _{IH}	High-level input voltage	2.0		V
V _{IL}	Low-level Input voltage		0.8	V
I _{ОН}	High-level output current		-32	mA
I _{OL}	Low-level output current		12	mA
Δt/Δv	Input transition rise or fall rate	0	5	ns/V
T _{amb}	Operating free-air temperature range	-40	+85	°C

DC ELECTRICAL CHARACTERISTICS

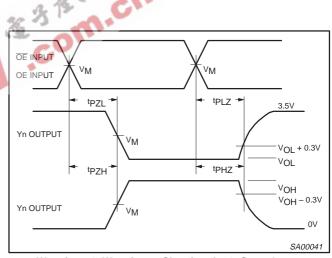
			-					
SYMBOL	PARAMETER	TEST CONDITIONS	Tai	T _{amb} = +25°C			T _{amb} = −40°C to +85°C	
		CO.	Min	Тур	Max	Min	Max	1
V _{IK}	Input clamp voltage	$V_{CC} = 4.5V; I_{IK} = -18mA$		-0.9	-1.2		-1.2	V
		V_{CC} = 4.5V; I_{OH} = -3mA; V_I = V_{IL} or V_{IH}	2.5	2.9		2.5		V
V _{OH}	High-level output voltage	$V_{CC} = 5.0V$; $I_{OH} = -3mA$; $V_I = V_{IL}$ or V_{IH}	3.0	3.4		3.0		V
		V_{CC} = 4.5V; 1 _{OH} = -32mA; V _I = V _{IL} or V _{IH}	2.0	2.4		2.0		V
V _{OL}	Low-level output voltage	V_{CC} = 4.5V; I_{OL} = 5mA; V_I = V_{IL} or V_{IH}		0.32	0.55		0.55	V
VOL	Low-level output voltage	V_{CC} = 4.5V; I _{OL} = 12mA; V _I = V _{IL} or V _{IH}			0.8		0.8	V
lı	Input leakage current	V_{CC} = 5.5V; V_I = GND or 5.5V		±0.01	±1.0		±1.0	μA
I _{OFF}	Power-off leakage current	V_{CC} = 0.0V; V _I or V _O \leq 4.5V		±5.0	±100		±100	μA
I _{PU} /I _{PD}	Power-up/down 3-State output current ³	$\begin{array}{l} V_{\underline{CC}} = 2.0V; \ V_{O} = 0.5V; \ V_{I} = GND \ or \ V_{CC}; \\ V_{OE} = V_{CC}; \ V_{OE} = GND \end{array}$		±5.0	±50		±50	μA
I _{OZH}	3-State output High current	V_{CC} = 5.5V; V_{O} = 2.7V; V_{I} = V_{IL} or V_{IH}		5.0	50		50	μA
I _{OZL}	3-State output Low current	V_{CC} = 5.5V; V_{O} = 0.5V; V_{I} = V_{IL} or V_{IH}		-5.0	-50		-50	μA
I _{CEX}	Output High leakage current	V_{CC} = 5.5V; V_{O} = 5.5V; V_{I} = GND or V_{CC}		5.0	50		50	μA
Ι _Ο	Output current ¹	$V_{CC} = 5.5V; V_{O} = 2.5V$	-50	-100	-180	-50	-180	mA
I _{CCH}		V_{CC} = 5.5V; Outputs High, V_I = GND or V_{CC}		50	250		250	μA
I _{CCL}	Quiescent supply current	V_{CC} = 5.5V; Outputs Low, V_{I} = GND or V_{CC}		24	30		30	mA
I _{CCZ}		V_{CC} = 5.5V; Outputs 3–State; V _I = GND or V _{CC}		50	250		250	μΑ
		Outputs enabled, one input at 3.4V, other inputs at V _{CC} or GND; V _{CC} = 5.5V		0.5	1.5		1.5	mA
ΔI_{CC}	Additional supply current per input pin ²	Outputs 3-State, one data input at 3.4V, other inputs at V _{CC} or GND; V _{CC} = 5.5V		50	250		250	μΑ
		Outputs 3-State, one enable input at 3.4V, other inputs at V _{CC} or GND; $V_{CC} = 5.5V$		0.5	1.5		1.5	mA

NOTES:

74ABT2241

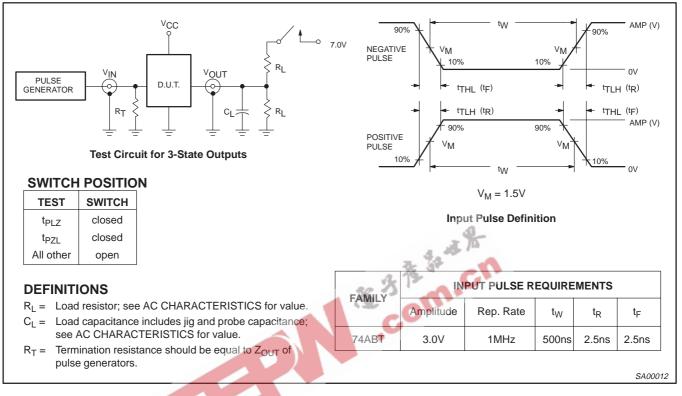

- 1. Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
- 2. This is the increase in supply current for each input at 3.4V.
- This parameter is valid for any V_{CC} between 0V and 2.1V with a transition time of up to 10msec. For V_{CC} = 2.1V to V_{CC} = 5V \pm 10%, a transition time of up to 100 µsec is permitted. 3.

AC CHARACTERISTICS


GND = 0V; t_R = t_F = 2.5ns; C_L = 50pF, R_L = 500 Ω

					LIMI	ſS		
SYMBOL	PARAMETER	WAVEFORM	T ₂ V	amb = +25° ′CC = +5.0′	C V	T _{amb} = -40 V _{CC} = +5	°C to +85°C .0V ±0.5V	UNIT
			Min	Тур	Max	Min	Max	
t _{PLH} t _{PHL}	Propagation delay An to Yn	1	1.0 1.0	2.7 3.9	4.3 5.3	1.0 1.0	4.7 5.6	ns
t _{PZH} t _{PZL}	Output enable time to High and Low level	2	1.1 2.1	3.3 5.4	4.8 7.6	1.1 2.1	5.8 8.4	ns
t _{PHZ} t _{PLZ}	Output disable time from High and Low level	2	1.7 1.7	3.8 3.4	5.6 5.8	1.7 1.7	6.6 6.4	ns
AC WAVE	FORMS	~ 3	なが	CI				

AC WAVEFORMS


Waveform 1. Waveforms Showing the Input (An) to Output (Yn) Propagation Delays

Waveform 2. Waveforms Showing the 3-State Output **Enable and Disable Times**

74ABT2241

TEST CIRCUIT AND WAVEFORMS

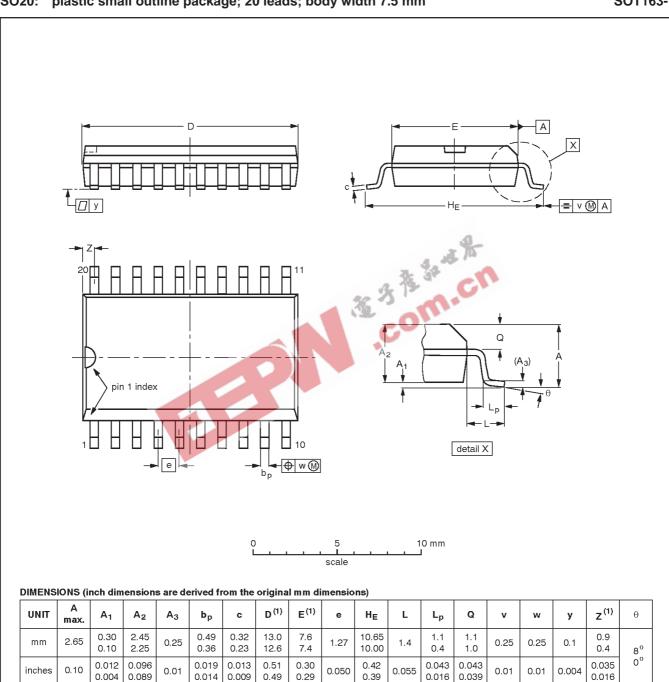
D M_E seating plane 11. ⊢⊕ w((e 11 M_{H} pin 1 index 10 10 mm 5 0 scale DIMENSIONS (inch dimensions are derived from the original mm dimensions) Т (1) Т Т Т

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	c	D ⁽¹⁾	E ⁽¹⁾	e	e ₁	L	ME	M _H	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.30	0.53 0.38	0.36 0.23	26.92 26.54	6.40 6.22	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	2.0
inches	0.17	0.020	0.13	0.068 0.051	0.021 0.015	0.014 0.009	1.060 1.045	0.25 0.24	0.10	0.30	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.078

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN				
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE	
SOT146-1			SC603			-92-11-17 95-05-24	


74ABT2241

DIP20: plastic dual in-line package; 20 leads (300 mil)

SOT146-1

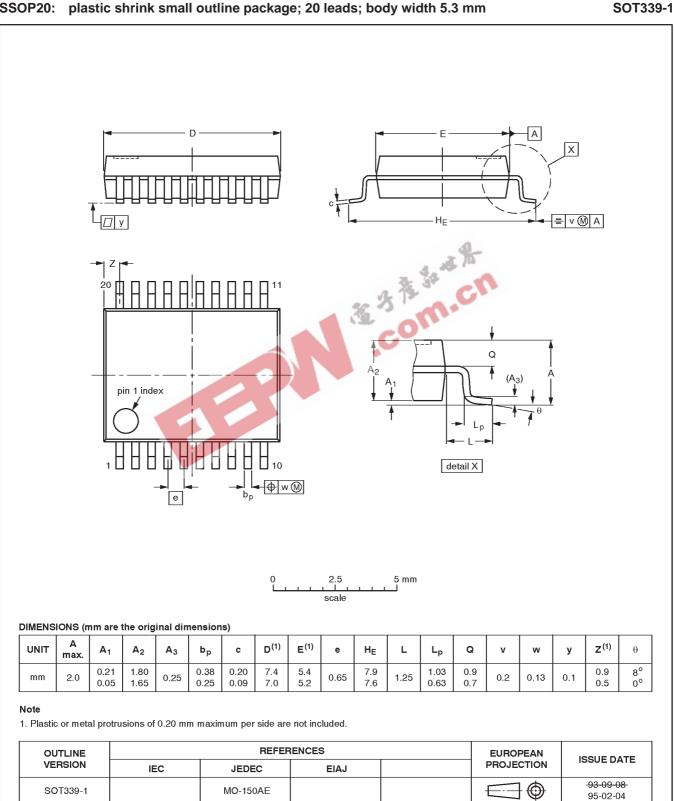
74ABT2241

Octal buffer with 30Ω series termination resistors (3-State)

SO20: plastic small outline package; 20 leads; body width 7.5 mm

Note

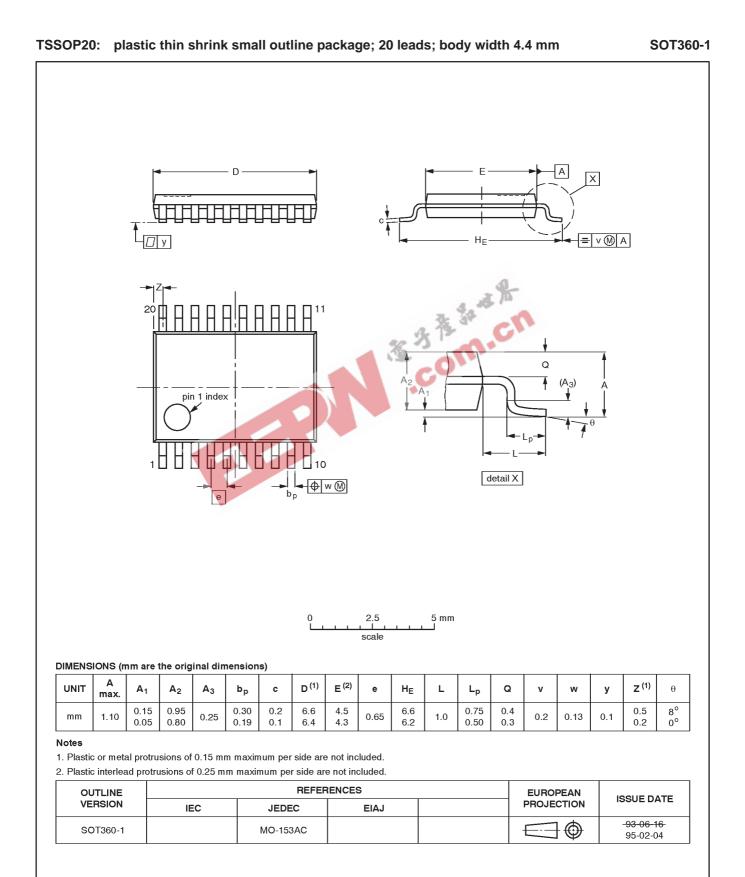
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.


OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC EIAJ			PROJECTION	ISSUE DATE	
SOT163-1	075E04	MS-013AC				-92-11-17 95-01-24	

SOT163-1

Product specification

Octal buffer with 30Ω series termination resistors (3-State)


74ABT2241

SSOP20: plastic shrink small outline package; 20 leads; body width 5.3 mm

1996 Sep 30

74ABT2241

74ABT2241

NOTES

74ABT2241

DEFINITIONS						
Data Sheet Identification	Product Status	Definition				
Objective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.				
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.				
Product Specification	Full Production	This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.				

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 Philips Semiconductors and Philips Electronics North America Corporation register eligible circuits under the Semiconductor Chip Protection Act. © Copyright Philips Electronics North America Corporation 1996 All rights reserved. Printed in U.S.A.