FAIRCH			March 2001 Revised March 2001				
	age 18-Bi	t Universal 3-STATE O	Bus Transceivers utputs				
combining D-type data flow in transpo- data flow in <u>each</u> (OEAB and OEBA clock (CLKAB and The LVTH16501 of the need for exter inputs. The transceiver is applications, but w face to a 5V envi with an advanced	is an 18-bit univers latches and D-type arent, latched, and c direction is controlle (), latch-enable (LE/	e flip-flops to allow locked modes. ed by output-enable AB and LEBA), and pushold, eliminating prs to hold unused voltage (3.3V) V _{CC} provide a TTL inter- 16501 is fabricated gy to achieve high	 Features Input and output interface capability to systems at 5V V_{CC} Bushold data inputs eliminate the need for external pull-up resistors to hold unused inputs Live insertion/extraction permitted Power up/down high impedance provides glitch-free bus loading Outputs source/sink -32 mA/+64 mA Functionally compatible with the 74 series 16501 ESD Performance: Human-Body Model > 2000V Machine Model > 200V Charged-Device Model > 1000V 				
Ordering C							
Order Number	Package Number		Package Description				
74LVTH16501MEA	MS56A		Outline Package (SSOP), JEDEC MO-118, 0.300 Wide				
74LVTH16501MTD MTD56 56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.							

Г

Connection Diagram					
$\begin{array}{c} 0 \text{EAB} \\ \text{LEAB} \\ \text{LAB} \\ \text{M} \\ \text{GND} \\ \text{M} $	1 56 2 55 3 54 4 53 5 52 6 51 7 50 8 49 9 48 10 47 11 46 12 45 13 44 14 43 15 42 16 41 17 40 18 39 19 38 20 37 21 36 22 35				

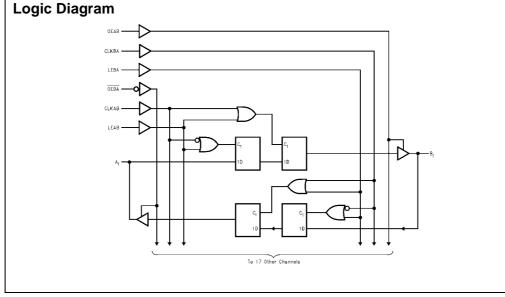
Pin Descriptions

Pin Names	Description
A ₁ -A ₁₈	Data Register A Inputs/3-STATE Outputs
A ₁ –A ₁₈ B ₁ –B ₁₈	Data Register B Inputs/3-STATE Outputs
CLKAB, CLKBA	Clock Pulse Inputs
LEAB, LEBA	Latch Enable Inputs
OEAB. OEBA	Output Enable Inputs

Function Table (Note 1)

	Inp	outs		Output			
OEAB	LEAB	CLKAB	A _n	B _n			
L	Х	Х	Х	Z			
н	Н	Х	L	L			
н	н	Х	н	н			
н	L	\uparrow	L	L			
н	L	Î	н	н			
н	L	H	х	B ₀ (Note 2)			
н	. 4. ⁴	Ĺ	Х	B ₀ (Note 2) B ₀ (Note 3)			
H = HIGH Volta	rel						
X = Immaterial							
$\hat{T} = LOW-to-HIGH Clock Transition$							

Note 1: A-to-B data flow is shown: B-to-A flow is similar but uses OEBA, LEBA, and CLKBA, OEBA is active LOW


Note 2: Output level before the indicated steady-state input conditions were established, provided that CLKAB was HIGH before LEAB went LOW. Note 3: Output level before the indicated steady-state input conditions were established.

Functional Description

For A-to-B data flow, the device operates in the transparent mode when LEAB is HIGH. When LEAB is LOW, the A data is latched if CLKAB is held at a HIGH or LOW logic level. If LEAB is LOW, the A bus data is stored in the latch/ flip-flop on the LOW-to-HIGH transition of CLKAB. Outputenable OEAB is active-HIGH. When OEAB is HIGH, the

outputs are active. When OEAB is LOW, the outputs are in the high-impedance state.

Data flow for B to A is similar to that of A-to-B but uses OEBA, LEBA, and CLKBA. The output enables are complementary (OEAB is active-HIGH and OEBA is active-LOW).

www.fairchildsemi.com

Absolute Maximum Ratings(Note 4)

Symbol	Parameter	Value	Conditions	Units
V _{CC}	Supply Voltage	-0.5 to +4.6		V
VI	DC Input Voltage	-0.5 to +7.0		V
Vo	DC Output Voltage	-0.5 to +7.0	Output in 3-STATE	V
		-0.5 to +7.0	Output in HIGH or LOW State (Note 5)	V
lık	DC Input Diode Current	-50	V _I < GND	mA
I _{ок}	DC Output Diode Current	-50	V _O < GND	mA
l _o	DC Output Current	64	V _O > V _{CC} Output at HIGH State	mA
		128	V _O > V _{CC} Output at LOW State	ШA
cc	DC Supply Current per Supply Pin	±64		mA
I _{GND}	DC Ground Current per Ground Pin	±128		mA
T _{STG}	Storage Temperature	-65 to +150		°C

Recommended Operating Conditions

Symbol	Parameter	Min 🔜	Max	Units
V _{CC}	Supply Voltage	2.7	3.6	V
VI	Input Voltage	0	5.5	V
I _{OH}	HIGH-Level Output Current		-32	mA
I _{OL}	LOW-Level Output Current		64	mA
T _A	Free-Air Operating Temperature	-40	85	°C
$\Delta t / \Delta V$	Input Edge Rate, $V_{IN} = 0.8V - 2.0V$, $V_{CC} = 3.0V$	0	10	ns/V

Note 4: Absolute Maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum rated conditions is not implied.

Note 5: I_O Absolute Maximum Rating must be observed.

74LVTH16501

74LVTH16501

DC Electrical Characteristics

Vcc $T_A = -40^{\circ}C$ to $+85^{\circ}C$ Symbol Parameter Units Conditions (V) Min Max Input Clamp Diode Voltage 2.7 -1.2 $I_1 = -18 \text{ mA}$ VIK V V_{IH} Input HIGH Voltage 2.7–3.6 2.0 V_O ≤ 0.1V or ۷ 2.7-3.6 0.8 $V_{O} \ge V_{CC} - 0.1V$ V_{IL} Input LOW Voltage $I_{OH} = -100 \ \mu A$ Output HIGH Voltage VOH 2.7-3.6 $V_{CC} - 0.2$ V 2.7 2.4 V $I_{OH} = -8 \text{ mA}$ $I_{OH} = -32 \text{ mA}$ 2.0 3.0 V $I_{OL}=100~\mu A$ VOL Output LOW Voltage 2.7 0.2 V $I_{OL} = 24 \text{ mA}$ 0.5 2.7 V $I_{OL} = 16 \text{ mA}$ 3.0 0.4 V $I_{OL} = 32 \text{ mA}$ 3.0 0.5 V $I_{OL} = 64 \text{ mA}$ 3.0 0.55 ٧ II(HOLD) Bushold Input Minimum Drive 75 μΑ $V_{1} = 0.8V$ 3.0 -75 $V_{I} = 2.0V$ μA Bushold Input Over-Drive 500 μA (Note 6) I_{I(OD)} 3.0 -500 (Note 7) Current to Change State μA Input Current 3.6 μA $V_{I} = 5.5V$ I_I ±1. Control Pins 3.6 μΑ $V_I = 0V \text{ or } V_{CC}$ -5 μA $V_I = 0V$ Data Pins 3.6 μA $V_I = V_{CC}$ Power Off Leakage Current ±100 $0V \leq V_{I} \text{ or } V_{O} \leq 5.5V$ 0 μA I_{OFF} I_{PU/PD} Power up/down 3-STATE V_{O} = 0.5V to 3.0V 0-1.5V ±100 μΑ $V_I = GND \text{ or } V_{CC}$ Output Current 3-STATE Output Leakage Current 3.6 -5 μΑ $V_{0} = 0.0V$ I_{OZL} V_O = 3.6V 3-STATE Output Leakage Current 3.6 5 I_{OZH} μΑ $V_{CC} < V_O \le 5.5V$ 3-STATE Output Leakage Current 10 I_{OZH}+ 3.6 μΑ 3.6 Outputs HIGH Power Supply Current 0.19 mA I_{CCH} Power Supply Current 3.6 5 mΑ Outputs LOW I_{CCL} I_{CCZ} Power Supply Current 3.6 0.19 mΑ Outputs Disabled 3.6 0.19 I_{CCZ}+ Power Supply Current mΑ $V_{CC} \le V_O \le 5.5V,$ Outputs Disabled Increase in Power Supply Current 0.2 $\Delta I_{\rm CC}$ 3.6 mΑ One Input at V_{CC} – 0.6V (Note 8) Other Inputs at V_{CC} or GND Note 6: An external driver must source at least the specified current to switch from LOW-to-HIGH.

Note 7: An external driver must sink at least the specified current to switch from HIGH-to-LOW.

Note 8: This is the increase in supply current for each input that is at the specified voltage level rather than V_{CC} or GND.

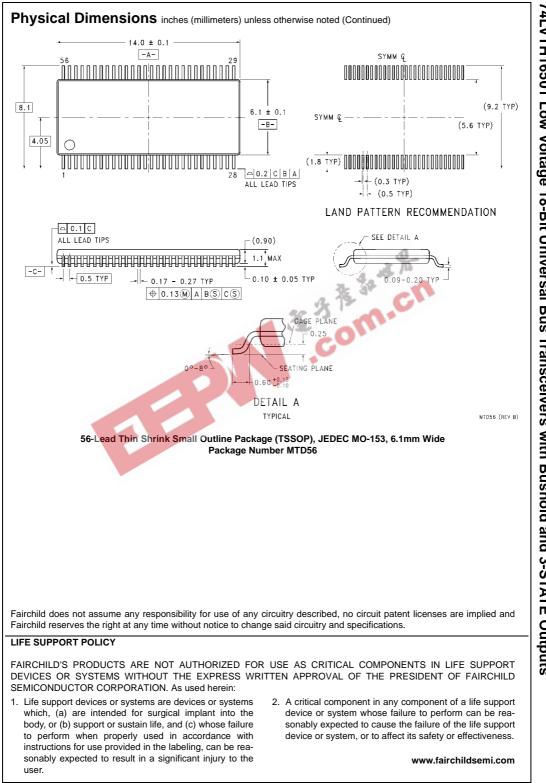
Dynamic Switching Characteristics (Note 9)

Symbol	Parameter	V _{cc}		$T_A = 25^{\circ}C$			Conditions	
		(V)	Min	Тур	Max	Units	$\textbf{C}_{\textbf{L}}=\textbf{50}~\textbf{pF},~\textbf{R}_{\textbf{L}}=\textbf{500}\Omega$	
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	3.3		0.8		V	(Note 10)	
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	3.3		-0.8		V	(Note 10)	

Note 9: Characterized in SSOP package. Guaranteed parameter, but not tested.

Note 10: Max number of outputs defined as (n). n-1 data inputs are driven 0V to 3V. Output under test held LOW.


			$\textbf{T}_{\textbf{A}}=-\textbf{40}^{\circ}\textbf{C}$ to +85°C, $\textbf{C}_{\textbf{L}}=\textbf{50}$ pF, $\textbf{R}_{\textbf{L}}=\textbf{500}~\Omega$				
Symbol	Parameter		V _{CC} = 3.3	$3\pm0.3V$	V _{CC} = 2.7V		Units
			Min	Max	Min	Max	1
f _{MAX}	CLKAB or CLKBA to B or A		150		150		MHz
t _{PLH}	Propagation Delay		1.3	5.1	1.3	5.6	
t _{PHL}	Data to Outputs		1.3	4.7	1.3	5.3	ns
t _{PLH}	Propagation Delay		1.5	5.5	1.5	6.1	
t _{PHL}	LEBA or LEAB to B or A		1.5	5.1	1.5	5.7	ns
t _{PLH}	Propagation Delay		1.3	56	1.3	6.2	
t _{PHL}	CLKBA or CLKAB to B or A		1.3	5.1	1.3	5.7	ns
t _{PZH}	Output Enable Time		1.3	4.9	1.3	5.6	
t _{PZL}			1.3	5.4	1.3	6.2	ns
t _{PHZ}	Output Disable Time		1.7	5.9	1.7	6.6	
t _{PLZ}			1.7	5.8	1.7	6.3	ns
ts	Setup Time	A before CLKAB	2.1		2.4		
	Γ	B before CLKBA	2.1		2.4		ns
	Γ	A or B before LE, CLK HIGH	2.4		1.6		115
	Γ	A or B before LE, CLK LOW	2.4	- a - 36	1.6		
t _H	Hold Time	A or B after CLK	1.0		1.0		ns
	Γ	A or B after LE	1.7		1.7		115
t _W	Pulse Width	LE HIGH	3.3	-	3.3		ns
	Γ	CLK HIGH or LOW	3.3		3.3		
t _{OSLH}	Output to Output Skew (Note 11)			1.0		1.0	ns
tOSHL				1.0		1.0	115


Capacitance (Note 12)

Symbol	Parameter	Conditions	Typical	Units				
CIN	Input Capacitance	$V_{CC} = 0V$, $V_I = 0V$ or V_{CC}	4	pF				
C _{I/O}	Input/Output Capacitance	V_{CC} = 3.0V, V_{O} = 0V or V_{CC}	8	pF				
Note 12: Ca	Note 12: Capacitance is measured at frequency f = 1 MHz, per MIL-STD-883, Method 3012.							

3, Method 3012.

74LVTH16501

www.fairchildsemi.com