SCAS758A-DECEMBER 2003-REVISED OCTOBER 2005

www.ti.com

F	FΔ	TI	IR	FS

- Member of the Texas Instruments Widebus™
 Family
- Operates From 1.65 V to 3.6 V
- Inputs Accept Voltages to 5.5 V
- Max t_{pd} of 4.4 ns at 3.3 V
- Typical V_{OLP} (Output Ground Bounce) <0.8 V at V_{CC} = 3.3 V, T_A = 25°C
- Typical V_{OHV} (Output V_{OH} Undershoot) >2 V at V_{CC} = 3.3 V, T_A = 25°C
- Supports Mixed-Mode Signal Operation on All Ports (5-V Input/Output Voltage With 3.3-V V_{CC})
- Output Ports Have Equivalent 26-Ω Series Resistors, So No External Resistors Are Required
- I_{off} Supports Partial-Power-Down Mode Operation
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 1000-V Charged-Device Model (C101)

DESCRIPTION/ORDERING INFORMATION

This 16-bit buffer/driver is designed for 1.65-V to 3.6-V $V_{\rm CC}$ operation.

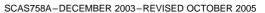
DGG, DGV, OR DL PACKAGE (TOP VIEW) 48 20E 1OE 1Y1 **1**2 47 1 1A1 1Y2 **∏**3 46**∏** 1A2 45 GND GND 1Y3 44 🛮 1A3 1Y4 [6 43 1A4 42 V_{CC} V_{CC} **∐** 7 2Y1 8 41 2A1 2Y2 **9** 40**∏** 2A2 39 GND GND 10 38 1 2A3 2Y3 🛮 11 2Y4 12 37 1 2A4 3Y1 П 13 36 3A1 3Y2 35 3A2 GND 34**∏** GND 33 3A3 3Y3 [3Y4 32 3A4 31 V_{CC} 30 4A1 4Y2 **1**20 29**∏** 4A2 GND **1** 21 28 | GND 27 1 4A3 4Y3 **1**22 26 **4**A4 4Y4 **1**23 4OE 25 3OE

The SN74LVC162244A is designed specifically to improve both the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. The device can be used as four 4-bit buffers, two 8-bit buffers, or one 16-bit buffer. It provides true outputs and symmetrical active-low output-enable (\overline{OE}) inputs.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SN74LVC162244A 16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS

SCAS758A-DECEMBER 2003-REVISED OCTOBER 2005



ORDERING INFORMATION

T _A	PACKAG	E (1)	ORDERABLE PART NUMBER	TOP-SIDE MARKING		
	FBGA – GRD	Tone and real	SN74LVC162244AGRDR	LD2244A		
	FBGA – ZRD (Pb-free)	Tape and reel	SN74LVC162244AZRDR	LD2244A		
	SSOP – DL	Tube	SN74LVC162244ADL	LVC162244A		
	330F - DL	Tape and reel	SN74LVC162244ADLR	LVC102244A		
–40°C to 85°C	TSSOP - DGG	TOCOR DOC		SN74LVC162244ADGGR	LVC162244A	
-40 C to 65 C		Tape and reel	74LVC162244ADGGRG4	LVC162244A		
	TVSOP – DGV	Tape and reel	SN74LVC162244ADGVR	LD2244A		
	TVSOP - DGV	rape and reer	74LVC162244ADGVRE4	LD2244A		
	VFBGA – GQL	Tape and reel	SN74LVC162244AGQLR	LD2244A		
	VFBGA – ZQL (Pb-free)	rape and reer	SN74LVC162244AZQLR	LUZZ44A		

⁽¹⁾ Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

DESCRIPTION/ORDERING INFORMATION (CONTINUED)

The outputs, which are designed to sink up to 12 mA, include equivalent $26-\Omega$ resistors to reduce overshoot and undershoot.

Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of this device as a translator in a mixed 3.3-V/5-V system environment.

This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

GQL OR ZQL PACKAGE (TOP VIEW)

	_	1	2	3	4	5	6	_
A 1		.)						1
В	()	()	()	()	()	()	
С	(.)	()	()	()	()	()	
D	()	()	()	()	()	()	
Е	()	()			()	()	
F	(.)	()			()	()	
G	()	()	()	()	()	()	
н	(.)	()	()	()	()	()	
J	()	()	()	()	()	()	
ĸ		.)	()	()	()	()	()	J

TERMINAL ASSIGNMENTS⁽¹⁾ (56-Ball GQL/ZQL Package)

	1	2	3	4	5	6
Α	1 OE	NC	NC	NC	NC	2 OE
В	1Y2	1Y1	GND	GND	1A1	1A2
С	1Y4	1Y3	V _{CC}	V _{CC}	1A3	1A4
D	2Y2	2Y1 🐠	GND	GND	2A1	2A2
Е	2Y4	2Y3	b		2A3	2A4
F	3Y1	3Y2	2		3A2	3A1
G	3Y3	3Y4	GND	GND	3A4	3A3
H	4Y1	4Y2	V _{CC}	V _{CC}	4A2	4A1
J	4Y3	4Y4	GND	GND	4A4	4A3
K	4 OE	NC	NC	NC	NC	3 OE

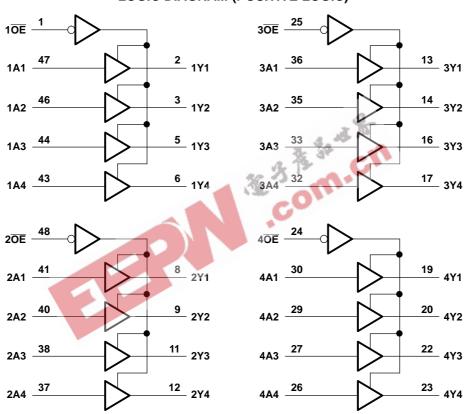
(1) NC - No internal connection

GRD OR ZRD PACKAGE (TOP VIEW)

		1	2	3	4	5	6	
Α	/	\bigcirc	\bigcirc	\bigcirc	()	O	\bigcirc	
В		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
С		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
D		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
E		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
F		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
G		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
н		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
J		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
	\							

TERMINAL ASSIGNMENTS⁽¹⁾ (54-Ball GRD/ZRD Package)

	1	2	3	4	5	6
Α	1Y1	NC	1 OE	2 OE	NC	1A1
В	1Y3	1Y2	NC	NC	1A2	1A3
С	2Y1	1Y4	V _{CC}	V _{CC}	1A4	2A1
D	2Y3	2Y2	GND	GND	2A2	2A3
Е	3Y1	2Y4	GND	GND	2A4	3A1
F	3Y3	3Y2	GND	GND	3A2	3A3
G	4Y1	3Y4	V _{CC}	V _{CC}	3A4	4A1
Н	4Y3	4Y2	NC	NC	4A2	4A3
J	4Y4	NC	4 OE	3 OE	NC	4A4


(1) NC - No internal connection

FUNCTION TABLE (EACH 4-BIT BUFFER)

INPL	NPUTS OUTP			
ŌĒ	Α	Y		
L	Н	Н		
L	L	L		
Н	X	Z		

LOGIC DIAGRAM (POSITIVE LOGIC)

Pin numbers shown are for the DGG, DGV, and DL packages.

SCAS758A-DECEMBER 2003-REVISED OCTOBER 2005

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range		-0.5	6.5	V
VI	Input voltage range ⁽²⁾		-0.5	6.5	V
Vo	Voltage range applied to any output in the hi	igh-impedance or power-off state ⁽²⁾	-0.5	6.5	V
Vo	Voltage range applied to any output in the hi	igh or low state (2)(3)	-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	V _I < 0		-50	mA
lok	Output clamp current	V _O < 0		-50	mA
Io	Continuous output current			±50	mA
	Continuous current through each V _{CC} or GN	ID		±100	mA
		DGG package		70	
	Output clamp current $V_{\rm O} < 0$ Continuous output current Continuous current through each $V_{\rm CC}$ or GND		58		
θ_{JA}	Package thermal impedance (4)	DL package		63	°C/W
		GQL/ZQL package		42	
		GRD/ZRD package		36	
T _{stg}	Storage temperature range	2_	-65	150	°C

 ⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
 (2) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

The value of V_{CC} is provided in the recommended operating conditions table.

The package thermal impedance is calculated in accordance with JESD 51-7.

Recommended Operating Conditions(1)

			MIN	MAX	UNIT	
V	Cumply veltage	Operating	1.65	3.6	V	
V_{CC}	Supply voltage	Data retention only	1.5		V	
		V _{CC} = 1.65 V to 1.95 V	$0.65 \times V_{CC}$			
V_{IH}	High-level input voltage	V _{CC} = 2.3 V to 2.7 V	1.7		V	
		V _{CC} = 2.7 V to 3.6 V	2			
		V _{CC} = 1.65 V to 1.95 V		$0.35 \times V_{CC}$		
V_{IL}	Low-level input voltage	V _{CC} = 2.3 V to 2.7 V		0.7	V	
		V _{CC} = 2.7 V to 3.6 V		0.8		
V _I	Input voltage	,	0	5.5	V	
.,	Output wells as	High or low state	0	V _{CC}	V	
Vo	O Output voltage	High-impedance state	0	5.5	V	
		V _{CC} = 1.65 V		-2		
	High lavel autout avenue	V _{CC} = 2.3 V		-4	A	
I _{OH}	High-level output current	V _{CC} = 2.7 V		-8	mA	
		V _{CC} = 3 V	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
		V _{CC} = 1.65 V		2		
	Law law Law and a company	V _{CC} = 2.3 V		4	1	
l _{OL}	Low-level output current	V _{CC} = 2.7 V		8	mA	
		V _{CC} = 3 V		12		
Δt/Δν	Input transition rise or fall rate	1		10	ns/V	
T _A	Operating free-air temperature		-40	85	°C	

All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

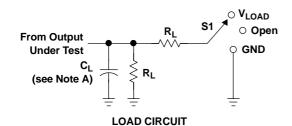
PARAMETER	TEST C	CONDITIONS	V _{cc}	MIN	TYP ⁽¹⁾	MAX	UNIT
	$I_{OH} = -100 \mu A$		1.65 V to 3.6 V	V _{CC} - 0.2			
	$I_{OH} = -2 \text{ mA}$		1.65 V	1.2			
	1 4 m A		2.3 V	1.7			
V _{OH}	$I_{OH} = -4 \text{ mA}$		2.7 V	2.2			V
	$I_{OH} = -6 \text{ mA}$		3 V	2.4			
V _{OH} I _{OH} = I _{OL} =	$I_{OH} = -8 \text{ mA}$		2.7 V	2			
	$I_{OH} = -12 \text{ mA}$		3 V	2		0.2 0.45 0.7 0.4 0.55 0.6 0.8 ±5 ±10 ±10 20 20 500	
	$I_{OL} = 100 \mu A$		1.65 V to 3.6 V			0.2	
	$I_{OL} = 2 \text{ mA}$		1.65 V			0.45	
	l - 4 mΛ		2.3 V			0.7	
V _{OL}	IOL = 4 IIIA	2.7 V			0.4	V	
	$I_{OL} = 6 \text{ mA}$	3 V			0.55		
	$I_{OL} = 8 \text{ mA}$		2.7 V			0.2 0.45 0.7 0.4 0.55 0.6 0.8 ±5 μ ±10 μ ±10 μ 20 μ 500 μ	
	$I_{OL} = 12 \text{ mA}$		3 V			0.8	
I _I	$V_1 = 0 \text{ to } 5.5 \text{ V}$		3.6 V			±5	μΑ
I _{off}	V_I or $V_O = 5.5 \text{ V}$		0			±10	μΑ
I _{OZ}	$V_0 = 0 \text{ to } 5.5 \text{ V}$	20 75	3.6 V			±10	μΑ
1	$V_I = V_{CC}$ or GND		2.6.1/			20	^
ICC	$3.6 \text{ V} \le \text{V}_{\text{I}} \le 5.5 \text{ V}^{(2)}$	I _O = 0	3.6 V			20	μΑ
ΔI_{CC}	One input at V _{CC} – 0.6 V,	Other inputs at V _{CC} or GND	2.7 V to 3.6 V			500	μΑ
C _i	$V_I = V_{CC}$ or GND		3.3 V		5.5		pF
Co	$V_O = V_{CC}$ or GND		3.3 V		6		рF

All typical values are at V_{CC} = 3.3 V, T_A = 25°C. This applies in the disabled state only.

Switching Characteristics

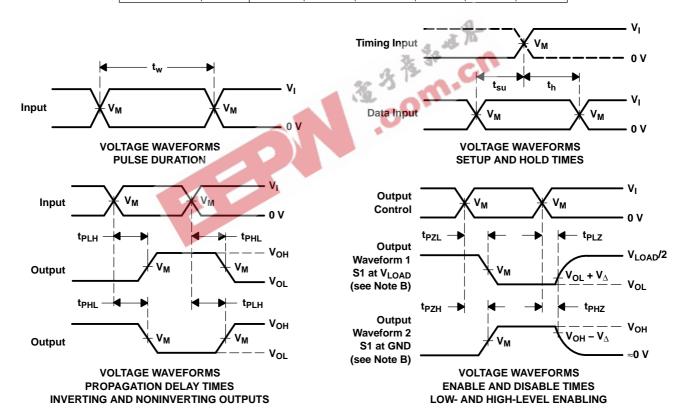
over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = ± 0.1		V _{CC} = 1 ± 0.2	2.5 V 2 V	V _{CC} =	2.7 V	V _{CC} = 3 ± 0.3	3.3 V 3 V	UNIT
	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	(
t _{pd}	Α	Y	1.5	6	1	4.3	1	5.6	1.1	4.4	ns
t _{en}	ŌĒ	Υ	1.5	7.3	1	5	1	6.9	1	5.5	ns
t _{dis}	ŌĒ	Υ	1.5	8.9	1	5.5	1	6.8	1.8	6.3	ns


Operating Characteristics

 $T_A = 25^{\circ}C$

PARAMETER			TEST CONDITIONS	V _{CC} = 1.8 V TYP	V _{CC} = 2.5 V TYP	V _{CC} = 3.3 V TYP	UNIT	
Power dissipation capacitance		Outputs enabled	f = 10 MHz	31	33	35	nE.	
C_{pd}	per buffer/driver	Outputs disabled	I = IO WINZ	2	3	4	pF	



PARAMETER MEASUREMENT INFORMATION

TEST	S1
t _{PLH} /t _{PHL}	Open
t _{PLZ} /t _{PZL}	V _{LOAD}
t _{PHZ} /t _{PZH}	GND

.,	INPUTS		.,	.,	•		.,
V _{CC}	VI	t _r /t _f	V _M	V _{LOAD}	CL	R_L	$oldsymbol{V}_{\Delta}$
1.8 V \pm 0.15 V	V _{CC}	≤2 ns	V _{CC} /2	2×V _{CC}	30 pF	1 k Ω	0.15 V
2.5 V \pm 0.2 V	v_{cc}	≤2 ns	V _{CC} /2	2×V _{CC}	30 pF	500 Ω	0.15 V
2.7 V	2.7 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V
3.3 V \pm 0.3 V	2.7 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en}.
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

6-Aug-2007

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
74LVC162244ADGGRE4	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
74LVC162244ADGGRG4	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
74LVC162244ADGVRE4	ACTIVE	TVSOP	DGV	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
74LVC162244ADGVRG4	ACTIVE	TVSOP	DGV	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
74LVC162244ADLRG4	ACTIVE	SSOP	DL	48	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC162244ADGGR	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC162244ADGVR	ACTIVE	TVSOP	DGV	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC162244ADL	ACTIVE	SSOP	DL	48	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC162244ADLG4	ACTIVE	SSOP	DL	48	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC162244ADLR	ACTIVE	SSOP	DL	48	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC162244AGQLR	NRND	BGA MI CROSTA R JUNI OR	GQL	56	1000	TBD	SNPB	Level-1-240C-UNLIM
SN74LVC162244AZQLR	ACTIVE	BGA MI CROSTA R JUNI OR	ZQL	56	1000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): Ti's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

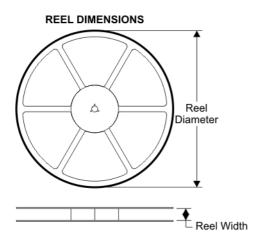
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the

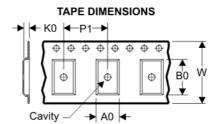
PACKAGE OPTION ADDENDUM

6-Aug-2007

accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

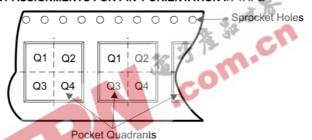
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.





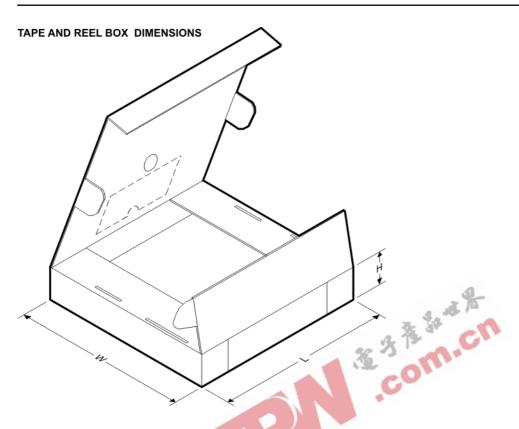
PACKAGE MATERIALS INFORMATION

4-Oct-2007

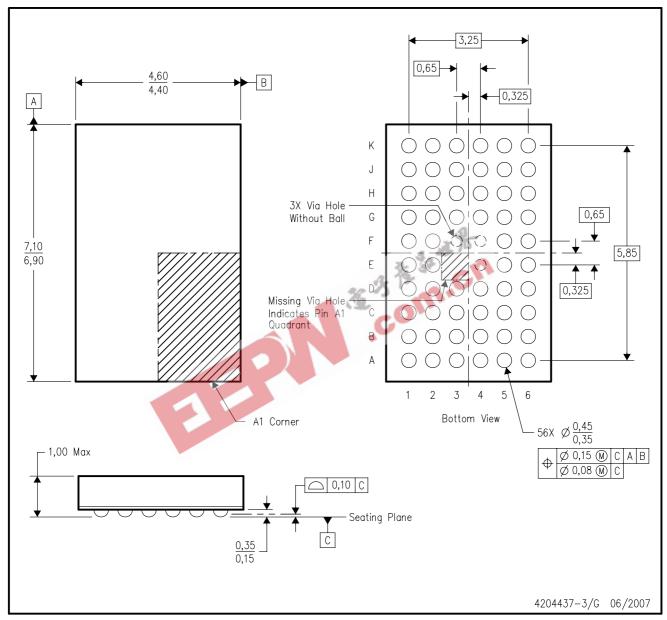

TAPE AND REEL BOX INFORMATION

A0	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPES



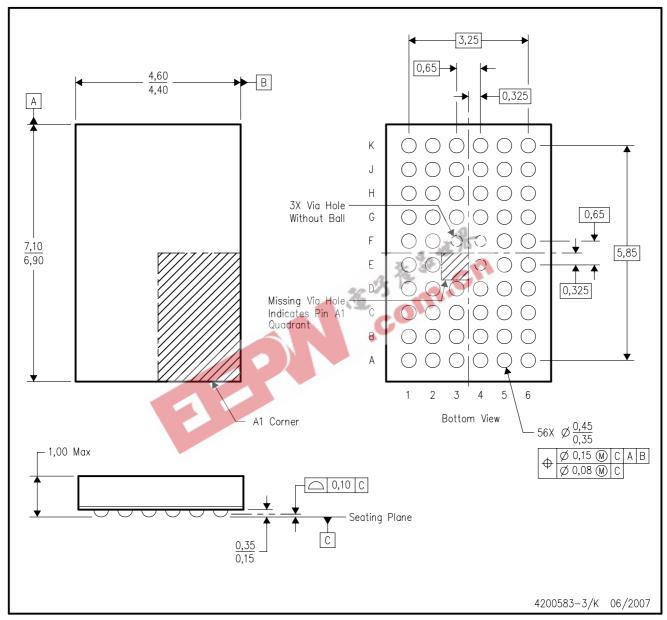
Device	Package	Pins		Reel Diameter (mm)	Reel Width (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LVC162244ADGGR	DGG	48	SITE 41	330	24	8.6	15.8	1.8	12	24	Q1
SN74LVC162244ADGVR	DGV	48	SITE 41	330	24	6.8	10.1	1.6	12	24	Q1
SN74LVC162244ADLR	DL	48	SITE 41	330	32	11.35	16.2	3.1	16	32	Q1
SN74LVC162244AGQLR	GQL	56	SITE 32	330	16	4.8	7.3	1.45	8	16	Q1
SN74LVC162244AZQLR	ZQL	56	SITE 32	330	16	4.8	7.3	1.45	8	16	Q1


4-Oct-2007

Device	Package	Pins	Site	Length (mm)	Width (mm)	Height (mm)
SN74LVC162244ADGGR	DGG	48	SITE 41	346.0	346.0	41.0
SN74LVC162244ADGVR	DGV	48	SITE 41	346.0	346.0	41.0
SN74LVC162244ADLR	DL	48	SITE 41	346.0	346.0	49.0
SN74LVC162244AGQLR	GQL	56	SITE 32	346.0	346.0	33.0
SN74LVC162244AZQLR	ZQL	56	SITE 32	346.0	346.0	33.0

ZQL (R-PBGA-N56)

PLASTIC BALL GRID ARRAY

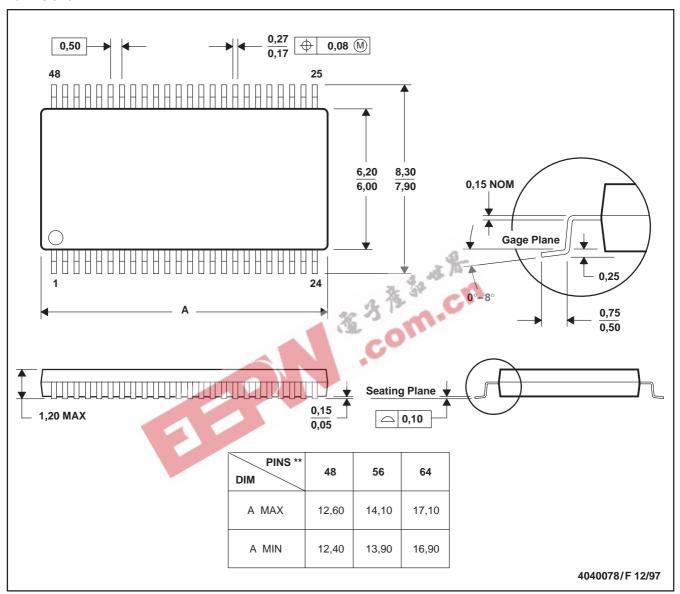

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MO-285 variation BA-2.
- D. This package is lead-free. Refer to the 56 GQL package (drawing 4200583) for tin-lead (SnPb).

GQL (R-PBGA-N56)

PLASTIC BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.


- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MO-285 variation BA-2.
- D. This package is tin-lead (SnPb). Refer to the 56 ZQL package (drawing 4204437) for lead-free.

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Amplifiers amplifier.ti.com Data Converters dataconverter.ti.com DSP dsp.ti.com Clocks and Timers www.ti.com/clocks Interface interface.ti.com Logic logic.ti.com Power Mgmt power.ti.com Microcontrollers microcontroller.ti.com www.ti-rfid.com RF/IF and ZigBee® Solutions www.ti.com/lprf

Applications Audio www.ti.com/audio Automotive www.ti.com/automotive Broadband www.ti.com/broadband Digital Control www.ti.com/digitalcontrol Medical www.ti.com/medical Military www.ti.com/military Optical Networking www.ti.com/opticalnetwork Security www.ti.com/security Telephony www.ti.com/telephony Video & Imaging www.ti.com/video Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright 2008, Texas Instruments Incorporated