
# INTEGRATED CIRCUITS



Product specification Supersedes data of 1997 Feb 19 IC24 Data Handbook 1998 May 20



### 74LV240

#### **FEATURES**

- Wide operating voltage: 1.0 to 5.5 V
- Optimized for low voltage applications: 1.0 to 3.6 V
- Accepts TTL input levels between V<sub>CC</sub> = 2.7 V and V<sub>CC</sub> = 3.6 V
- Typical V<sub>OLP</sub> (output ground bounce) < 0.8 V at V<sub>CC</sub> = 3.3 V,  $T_{amb} = 25^{\circ}C$
- Typical V<sub>OHV</sub> (output V<sub>OH</sub> undershoot) > 2 V at V<sub>CC</sub> = 3.3 V,  $T_{amb} = 25^{\circ}C$
- Output capability: bus driver
- I<sub>CC</sub> category: MSI

#### QUICK REFERENCE DATA

#### GND = 0 V; $T_{amb} = 25^{\circ}C$ ; $t_r = t_f \le 2.5 \text{ ns}$

#### DESCRIPTION

The 74LV240 is a low-voltage Si-gate CMOS device and is pin and function compatible with 74HC/HCT240.

The 74LV240 is an octal inverting buffer/line driver with 3-State outputs. The 3-State outputs are controlled by the output enable inputs 10E and 20E. A HIGH on nOE causes the outputs to assume a high impedance OFF-state. The 74LV240 is identical to the 74LV244 but has inverting outputs.

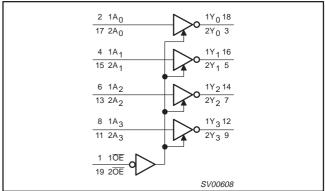
| SYMBOL                             | PARAMETER                                             | CONDITIONS                                           | TYPICAL | UNIT |
|------------------------------------|-------------------------------------------------------|------------------------------------------------------|---------|------|
| t <sub>PHL</sub> /t <sub>PLH</sub> | Propagation delay $1A_n$ to $1Y_n$ ; $2A_n$ to $2Y_n$ | C <sub>L</sub> = 15 pF;<br>V <sub>CC</sub> = 3.3 V   | 9.0     | ns   |
| Cl                                 | Input capacitance                                     | 80 B -                                               | 3.5     | pF   |
| C <sub>PD</sub>                    | Power dissipation capacitance per buffer              | $V_{CC} = 3.3 V$<br>$V_L = GND \text{ to } V_{CC}^1$ | 30      | pF   |

1

NOTE:

1.  $C_{PD}$  is used to determine the dynamic power dissipation (P<sub>D</sub> in  $\mu$ W)

 $\begin{array}{l} \mathsf{P}_{D} = \mathsf{C}_{PD} \times \mathsf{V}_{CC}^2 \times \mathsf{f}_i + \sum \left(\mathsf{C}_L \times \mathsf{V}_{CC}^2 \times \mathsf{f}_o\right) \text{ where:} \\ \mathsf{f}_i = \mathsf{input} \ \mathsf{frequency} \ \mathsf{in} \ \mathsf{MHz}; \ \mathsf{C}_L = \mathsf{output} \ \mathsf{load} \ \mathsf{capacitance} \ \mathsf{in} \ \mathsf{PF}; \\ \mathsf{f}_o = \mathsf{output} \ \mathsf{frequency} \ \mathsf{in} \ \mathsf{MHz}; \ \mathsf{V}_{CC} = \mathsf{supply} \ \mathsf{voltage} \ \mathsf{in} \ \mathsf{V}; \\ \sum \left(\mathsf{C}_L \times \mathsf{V}_{CC}^2 \times \mathsf{f}_o\right) = \mathsf{sum} \ \mathsf{of} \ \mathsf{the} \ \mathsf{outputs}. \end{array}$ 

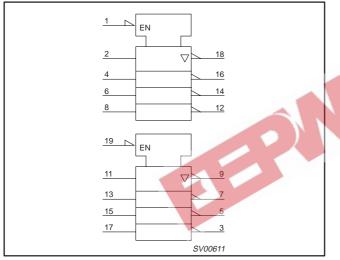

#### ORDERING INFORMATION

| PACKAGES                    | TEMPERATURE RANGE | OUTSIDE NORTH AMERICA | NORTH AMERICA | PKG. DWG. # |
|-----------------------------|-------------------|-----------------------|---------------|-------------|
| 20-Pin Plastic DIL          | –40°C to +125°C   | 74LV240 N             | 74LV240 N     | SOT146-1    |
| 20-Pin Plastic SO           | –40°C to +125°C   | 74LV240 D             | 74LV240 D     | SOT163-1    |
| 20-Pin Plastic SSOP Type II | –40°C to +125°C   | 74LV240 DB            | 74LV240 DB    | SOT339-1    |
| 20-Pin Plastic TSSOP Type I | -40°C to +125°C   | 74LV240 PW            | 74LV240PW DH  | SOT360-1    |

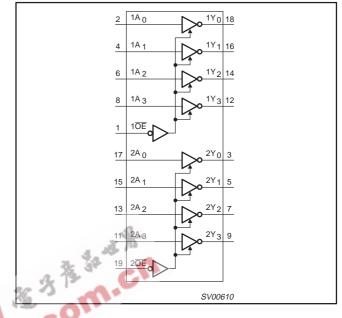
#### **PIN CONFIGURATION**

| 10E 1             | 20 V <sub>CC</sub> |
|-------------------|--------------------|
| 1A <sub>0</sub> 2 | 19 2OE             |
| 2Y <sub>0</sub> 3 | 18 1Y <sub>0</sub> |
| 1A <sub>1</sub> 4 | 17 2A <sub>0</sub> |
| 2Y <sub>1</sub> 5 | 16 1Y <sub>1</sub> |
| 1A <sub>2</sub> 6 | 15 2A <sub>1</sub> |
| 2Y <sub>2</sub> 7 | 14 1Y <sub>2</sub> |
| 1A <sub>3</sub> 8 | 13 2A <sub>2</sub> |
| 2Y <sub>3</sub> 9 | 12 1Y <sub>3</sub> |
| GND 10            | 11 2A <sub>3</sub> |
|                   | SV00607            |
|                   | 010000             |

### LOGIC SYMBOL




### 74LV240


### **PIN DESCRIPTION**

| PIN<br>NUMBER  | SYMBOL           | FUNCTION                         |
|----------------|------------------|----------------------------------|
| 1              | 1 <del>0E</del>  | Output enable input (active LOW) |
| 2, 4, 6, 8     | $1A_0$ to $1A_3$ | Data inputs                      |
| 3, 5, 7, 9     | $2Y_0$ to $2Y_3$ | Bus outputs                      |
| 10             | GND              | Ground (0 V)                     |
| 17, 15, 13, 11 | $2A_0$ to $2A_3$ | Data inputs                      |
| 18, 16, 14, 12 | $1Y_0$ to $1Y_3$ | Bus outputs                      |
| 19             | 2 <del>0E</del>  | Output enable input (active LOW) |
| 20             | V <sub>CC</sub>  | Positive supply voltage          |

### LOGIC SYMBOL (IEEE/IEC)



#### **FUNCTIONAL DIAGRAM**



### FUNCTION TABLE

| INPU | JTS             | OUTPUT          |
|------|-----------------|-----------------|
| nOE  | nA <sub>n</sub> | nY <sub>n</sub> |
| L    | L               | Н               |
| L    | Н               | L               |
| Н    | Х               | Z               |

#### NOTES: H =

L =

HIGH voltage level LOW voltage level don't care high impedance OFF-state XZ =

### 74LV240

#### **RECOMMENDED OPERATING CONDITIONS**

| SYMBOL                          | PARAMETER                                       | CONDITIONS                                                                                                                             | MIN         | TYP              | MAX                     | UNIT |
|---------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------|-------------------------|------|
| V <sub>CC</sub>                 | DC supply voltage                               | See Note 1                                                                                                                             | 1.0         | 3.3              | 5.5                     | V    |
| VI                              | Input voltage                                   |                                                                                                                                        | 0           | -                | V <sub>CC</sub>         | V    |
| Vo                              | Output voltage                                  |                                                                                                                                        | 0           | -                | V <sub>CC</sub>         | V    |
| T <sub>amb</sub>                | Operating ambient temperature range in free air | See DC and AC characteristics                                                                                                          | -40<br>-40  |                  | +85<br>+125             | °C   |
| t <sub>r</sub> , t <sub>f</sub> | Input rise and fall times                       | $V_{CC} = 1.0V \text{ to } 2.0V \\ V_{CC} = 2.0V \text{ to } 2.7V \\ V_{CC} = 2.7V \text{ to } 3.6V \\ V_{CC} = 3.6V \text{ to } 5.5V$ | -<br>-<br>- | -<br>-<br>-<br>- | 500<br>200<br>100<br>50 | ns/V |

NOTE:

1. The LV is guaranteed to function down to V<sub>CC</sub> = 1.0V (input levels GND or V<sub>CC</sub>); DC characteristics are guaranteed from V<sub>CC</sub> = 1.2V to  $V_{CC} = 5.5V.$ 

#### ABSOLUTE MAXIMUM RATINGS<sup>1, 2</sup>

| SYMBOL                                      | PARAMETER                                                                                                                 | CONDITIONS                                                                                                                                                               | RATING            | UNIT |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------|
| V <sub>CC</sub>                             | DC supply voltage                                                                                                         |                                                                                                                                                                          | -0.5 to +7.0      | V    |
| $\pm I_{\text{IK}}$                         | DC input diode current                                                                                                    | $V_{\rm I} < -0.5 \text{ or } V_{\rm I} > V_{\rm CC} + 0.5 V$                                                                                                            | 20                | mA   |
| $\pm I_{OK}$                                | DC output diode current                                                                                                   | $V_{\rm O} < -0.5$ or $V_{\rm O} > V_{\rm CC} + 0.5V$                                                                                                                    | 50                | mA   |
| $\pm I_{O}$                                 | DC output source or sink current<br>– bus driver outputs                                                                  | $-0.5V < V_{O} < V_{CC} + 0.5V$                                                                                                                                          | 35                | mA   |
| $\substack{\pm \ I_{GND}, \\ \pm \ I_{CC}}$ | DC V <sub>CC</sub> or GND current for types with<br>– bus driver outputs                                                  |                                                                                                                                                                          | 70                | mA   |
| T <sub>stg</sub>                            | Storage temperature range                                                                                                 |                                                                                                                                                                          | -65 to +150       | °C   |
| P <sub>TOT</sub>                            | Power dissipation per package<br>– plastic DIL<br>– plastic mini-pack (SO)<br>– plastic shrink mini-pack (SSOP and TSSOP) | for temperature range: -40 to +125°C<br>above +70°C derate linearly with 12 mW/K<br>above +70°C derate linearly with 8 mW/K<br>above +60°C derate linearly with 5.5 mW/K | 750<br>500<br>400 | mW   |

NOTES:

Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

2. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

### 74LV240

#### DC ELECTRICAL CHARACTERISTICS

Over recommended operating conditions. Voltages are referenced to GND (ground = 0V).

|                 |                                                     |                                                                         |                       |                  | LIMITS                |                       |                       |     |
|-----------------|-----------------------------------------------------|-------------------------------------------------------------------------|-----------------------|------------------|-----------------------|-----------------------|-----------------------|-----|
| SYMBOL          | PARAMETER                                           | TEST CONDITIONS                                                         | -40                   | °C to +8         | 5°C                   | -40°C to              | o +125°C              |     |
|                 |                                                     |                                                                         | MIN                   | TYP <sup>1</sup> | MAX                   | MIN                   | MAX                   | 1   |
|                 |                                                     | $V_{CC} = 1.2V$                                                         | 0.9                   |                  |                       | 0.9                   |                       |     |
| Maria           | HIGH level Input                                    | $V_{CC} = 2.0 V$                                                        | 1.4                   |                  |                       | 1.4                   |                       |     |
| V <sub>IH</sub> | voltage                                             | V <sub>CC</sub> = 2.7 to 3.6V                                           | 2.0                   |                  |                       | 2.0                   |                       | ] ` |
|                 |                                                     | $V_{CC} = 4.5 \text{ to } 5.5 \text{V}$                                 | 0.7 * V <sub>CC</sub> |                  |                       | 0.7 * V <sub>CC</sub> |                       | ]   |
|                 |                                                     | $V_{CC} = 1.2V$                                                         |                       |                  | 0.3                   |                       | 0.3                   |     |
| V <sub>IL</sub> | LOW level Input                                     | $V_{CC} = 2.0 V$                                                        |                       |                  | 0.6                   |                       | 0.6                   |     |
| ۷IL             | voltage                                             | V <sub>CC</sub> = 2.7 to 3.6V                                           |                       |                  | 0.8                   |                       | 0.8                   | ] ` |
|                 |                                                     | $V_{CC} = 4.5$ to 5.5                                                   |                       |                  | 0.3 * V <sub>CC</sub> |                       | 0.3 * V <sub>CC</sub> | ]   |
|                 |                                                     | $V_{CC}$ = 1.2V; $V_I$ = $V_{IH}$ or $V_{IL;}$ – $I_O$ = 100 $\mu A$    |                       | 1.2              |                       |                       |                       |     |
|                 |                                                     | $V_{CC}$ = 2.0V; $V_I$ = $V_{IH}$ or $V_{IL;}$ – $I_O$ = 100 $\mu$ A    | 1.8                   | 2.0              | 5                     | 1.8                   |                       | ]   |
| V <sub>OH</sub> | HIGH level output voltage; all outputs              | $V_{CC}$ = 2.7V; $V_I$ = $V_{IH}$ or $V_{IL;}$ – $I_O$ = 100 $\mu$ A    | 2.5                   | 2.7              |                       | 2.5                   |                       | V   |
|                 |                                                     | $V_{CC}$ = 3.0V; $V_I$ = $V_{IH}$ or $V_{IL;}$ – $I_O$ = 100 $\mu$ A    | 2.8                   | 3.0              |                       | 2.8                   |                       | ]   |
|                 |                                                     | $V_{CC}$ = 4.5V; $V_I$ = $V_{IH}$ or $V_{IL;}$ – $I_O$ = 100 $\mu$ A    | 4.3                   | 4.5              |                       | 4.3                   |                       | ]   |
| .,              | HIGH level output                                   | $V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL;} - I_0 = 8mA$           | 2.40                  | 2.82             |                       | 2.20                  |                       |     |
| V <sub>OH</sub> | voltage; BUS driver outputs                         | $V_{CC} = 4.5V; V_I = V_{IH} \text{ or } V_{IL}; -I_O = 16mA$           | 3.60                  | 4.20             |                       | 3.50                  |                       |     |
|                 |                                                     | $V_{CC} = 1.2V; V_I = V_{IH} \text{ or } V_{IL}; I_O = 100 \mu A$       |                       | 0                |                       |                       |                       |     |
|                 |                                                     | $V_{CC} = 2.0V; V_I = V_{IH} \text{ or } V_{IL}; I_O = 100 \mu A$       |                       | 0                | 0.2                   |                       | 0.2                   | 1   |
| V <sub>OL</sub> | LOW level output voltage; all outputs               | $V_{CC} = 2.7V; V_I = V_{IH} \text{ or } V_{IL;} I_O = 100 \mu A$       |                       | 0                | 0.2                   |                       | 0.2                   | V   |
|                 | renage, an earpute                                  | $V_{CC} = 3.0V; V_1 = V_{IH} \text{ or } V_{IL}; I_0 = 100 \mu A$       |                       | 0                | 0.2                   |                       | 0.2                   | ]   |
|                 |                                                     | $V_{CC} = 4.5V; V_1 = V_{IH} \text{ or } V_{IL;} I_0 = 100 \mu A$       |                       | 0                | 0.2                   |                       | 0.2                   | ]   |
| M               | LOW level output voltage; BUS driver                | $V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL}; I_O = 8mA$             |                       | 0.20             | 0.40                  |                       | 0.50                  | v   |
| V <sub>OL</sub> | outputs                                             | $V_{CC}$ = 4.5V; $V_I$ = $V_{IH}$ or $V_{IL}$ ; $I_O$ = 16mA            |                       | 0.35             | 0.55                  |                       | 0.65                  | ] ` |
| I <sub>I</sub>  | Input leakage<br>current                            | $V_{CC} = 5.5V; V_I = V_{CC} \text{ or GND}$                            |                       |                  | 1.0                   |                       | 1.0                   | μΑ  |
| I <sub>OZ</sub> | 3-State output<br>OFF-state current                 | $V_{CC} = 5.5$ V; $V_I = V_{IH}$ or $V_{IL}$ ;<br>$V_O = V_{CC}$ or GND |                       |                  | 5                     |                       | 10                    | μA  |
| I <sub>CC</sub> | Quiescent supply<br>current; MSI                    | $V_{CC}$ = 5.5V; $V_I$ = $V_{CC}$ or GND; $I_O$ = 0                     |                       |                  | 20.0                  |                       | 160                   | μA  |
| $\Delta I_{CC}$ | Additional<br>quiescent supply<br>current per input | $V_{CC} = 2.7V$ to 3.6V; $V_{I} = V_{CC} - 0.6V$                        |                       |                  | 500                   |                       | 850                   | μA  |

NOTE:

1. All typical values are measured at  $T_{amb} = 25^{\circ}C$ .

### 74LV240

#### **AC CHARACTERISTICS**

GND = 0V;  $t_r = t_f \le 2.5 \text{ns}$ ;  $C_L = 50 \text{pF}$ ;  $R_L = 1 \text{K}\Omega$ 

|                                    |                                    |           | CONDITION           |      |                  | LIMITS |          |         |      |
|------------------------------------|------------------------------------|-----------|---------------------|------|------------------|--------|----------|---------|------|
| SYMBOL                             | PARAMETER                          | WAVEFORM  | CONDITION           |      | 40 to +85 °      | С      | -40 to - | +125 °C | UNIT |
|                                    |                                    |           | V <sub>CC</sub> (V) | MIN  | TYP <sup>1</sup> | MAX    | MIN      | MAX     |      |
|                                    |                                    |           | 1.2                 |      | 55               |        |          |         |      |
|                                    | Propagation delay                  |           | 2.0                 |      | 19               | 24     |          | 31      |      |
| t <sub>PHL</sub> /t <sub>PLH</sub> | $1A_n$ to $1Y_n$ ;                 | Figures 1 | 2.7                 |      | 14               | 18     |          | 23      | ns   |
|                                    | 2A <sub>n</sub> to 2Y <sub>n</sub> |           | 3.0 to 3.6          |      | 10 <sup>2</sup>  | 14     |          | 18      |      |
|                                    |                                    |           | 4.5 to 5.5          |      |                  | 12     |          | 15      |      |
|                                    |                                    |           | 1.2                 |      | 70               |        |          |         |      |
|                                    | 3-State output enable time         |           | 2.0                 |      | 24               | 32     |          | 41      |      |
| t <sub>PZH</sub> /t <sub>PZL</sub> | $1\overline{OE}$ to $1Y_n$ ;       | Figures 2 | 2.7                 |      | 18               | 24     |          | 30      | ns   |
|                                    | $2\overline{OE}$ to $2Y_n$         |           | 3.0 to 3.6          |      | 13 <sup>2</sup>  | 19     |          | 24      |      |
|                                    |                                    |           | 4.5 to 5.5          | - 54 |                  | 16     |          | 20      |      |
|                                    |                                    |           | 1.2                 | 2    | 65               |        |          |         |      |
|                                    | 3-State output disable time        |           | 2.0                 | 50   | 24               | 29     |          | 36      |      |
| t <sub>PHZ</sub> /t <sub>PLZ</sub> | $1\overline{OE}$ to $1Y_{n}$ ;     | Figures 2 | 2.7                 |      | 18               | 22     |          | 27      | ns   |
|                                    | $2\overline{OE}$ to $2Y_n$         |           | 3.0 to 3.6          |      | 14 <sup>2</sup>  | 18     |          | 22      |      |
|                                    |                                    |           | 4.5 to 5.5          |      |                  | 15     |          | 18      |      |

#### NOTES:

1. Unless otherwise stated, all typical values are measured at Tamb = 25°C

2. Typical values are measured at  $V_{CC} = 3.3$  V.

#### AC WAVEFORMS

$$\begin{split} & V_M = 1.5V \text{ at } V_{CC} \geq 2.7V \text{ and } \leq 3.6V; \\ & V_M = 0.5V \times V_{CC} \text{ at } V_{CC} < 2.7V \text{ and } \geq 4.5V. \\ & V_{OL} \text{ and } V_{OH} \text{ are the typical output voltage drop that occur with the output load.} \\ & V_X = V_{OL} + 0.3V \text{ at } V_{CC} \geq 2.7V \text{ and } \leq 3.6V \\ & V_X = V_{OL} + 0.1V \times V_{CC} \text{ at } V_{CC} < 2.7V \text{ and } 4.5V \\ & V_Y = V_{OH} - 0.3V \text{ at } V_{CC} \geq 2.7V \text{ and } \leq 3.6V \\ & V_Y = V_{OH} - 0.1 \times V_{CC} \text{ at } V_{CC} < 2.7V \text{ and } \geq 4.5V \\ \hline \\ & V_1 = V_{OH} - 0.1 \times V_{CC} \text{ at } V_{CC} < 2.7V \text{ and } \geq 4.5V \end{split}$$

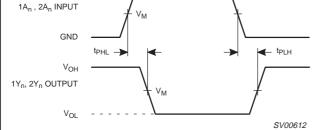
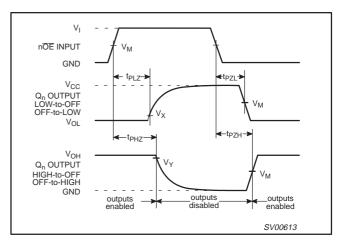
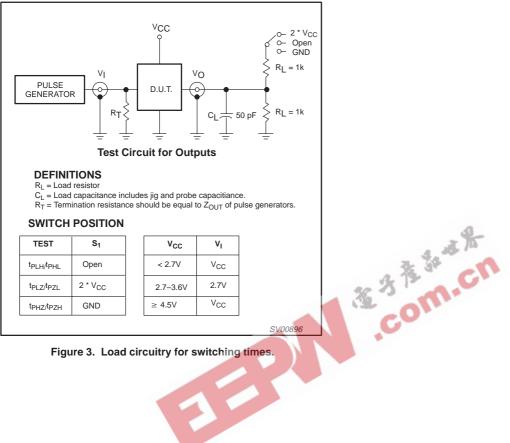
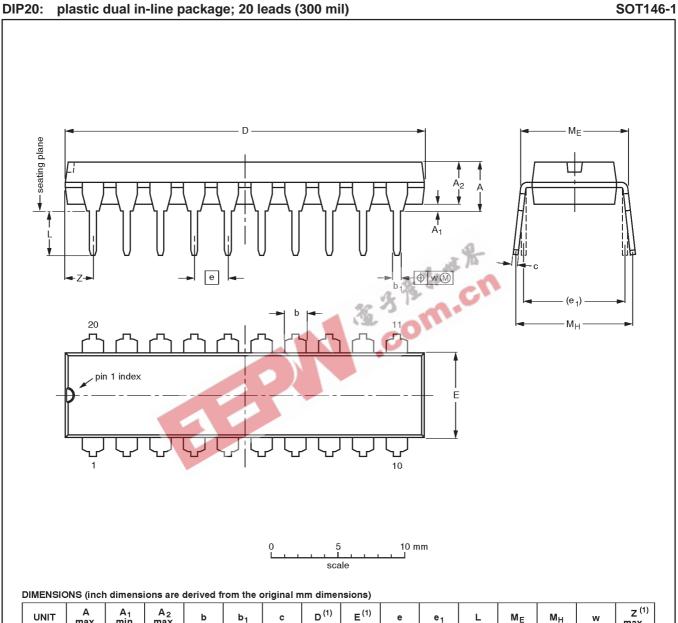



Figure 1. Input (1A<sub>n</sub>, 2A<sub>n</sub>) to output (1Y<sub>n</sub>, 2Y<sub>n</sub>) propagation delays.



Figure 2. 3-State enable and disable times.

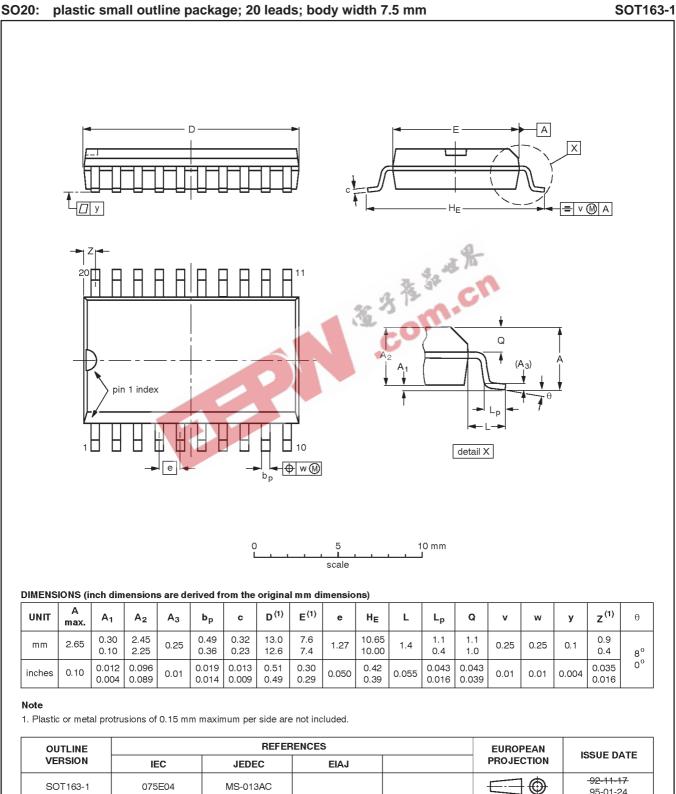
#### Product specification

### 74LV240

#### **TEST CIRCUIT**






| UNIT   | A<br>max. | A <sub>1</sub><br>min. | A <sub>2</sub><br>max. | b              | b <sub>1</sub> | с              | D <sup>(1)</sup> | E <sup>(1)</sup> | е    | e <sub>1</sub> | L            | M <sub>E</sub> | M <sub>H</sub> | w     | Z <sup>(1)</sup><br>max. |
|--------|-----------|------------------------|------------------------|----------------|----------------|----------------|------------------|------------------|------|----------------|--------------|----------------|----------------|-------|--------------------------|
| mm     | 4.2       | 0.51                   | 3.2                    | 1.73<br>1.30   | 0.53<br>0.38   | 0.36<br>0.23   | 26.92<br>26.54   | 6.40<br>6.22     | 2.54 | 7.62           | 3.60<br>3.05 | 8.25<br>7.80   | 10.0<br>8.3    | 0.254 | 2.0                      |
| inches | 0.17      | 0.020                  | 0.13                   | 0.068<br>0.051 | 0.021<br>0.015 | 0.014<br>0.009 | 1.060<br>1.045   | 0.25<br>0.24     | 0.10 | 0.30           | 0.14<br>0.12 | 0.32<br>0.31   | 0.39<br>0.33   | 0.01  | 0.078                    |

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

| VERSION IEC JEDEC EIAJ PROJECTION | OUTLINE  |     | REFER | ENCES | EUROPEAN   | ISSUE DATE |
|-----------------------------------|----------|-----|-------|-------|------------|------------|
| 2011/01                           | VERSION  | IEC | JEDEC | EIAJ  | PROJECTION | 1550E DATE |
| SC603 95-05-24                    | SOT146-1 |     |       | SC603 |            |            |

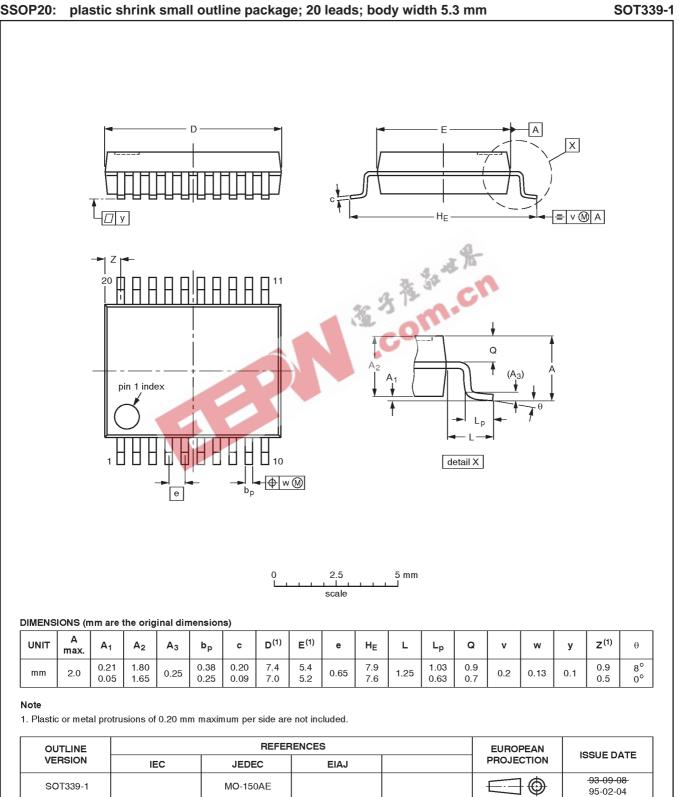
74LV240



## SO20:

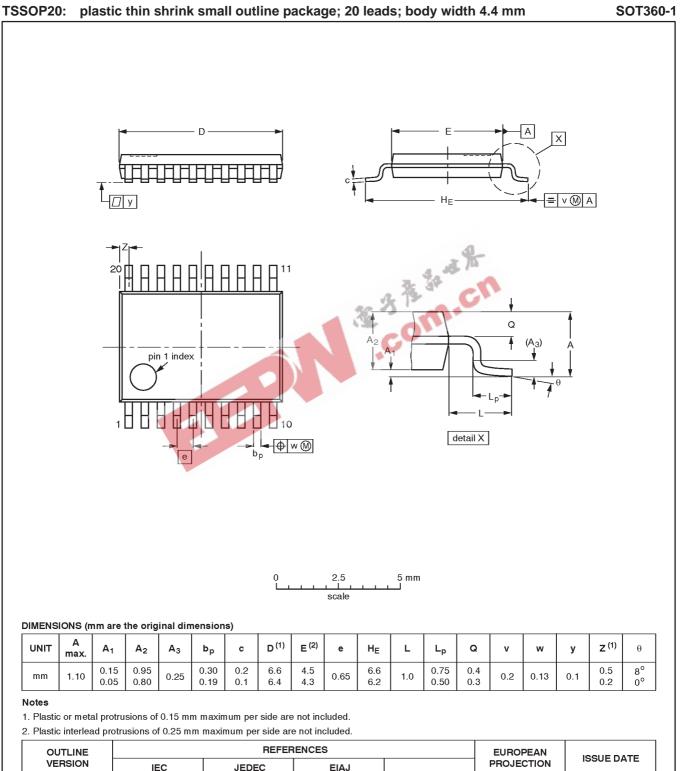
1998 May 20

SOT163-1


075E04

MS-013AC

E


95-01-24

74LV240



### SSOP20:

74LV240



74LV240

93-06-16

95-02-04

 $\odot$ 

E

SOT360-1

MO-153AC

#### Product specification

### Octal buffer/line driver; inverting (3-State)

### 74LV240

|                           |                        | DEFINITIONS                                                                                                                                                                                                                                                |
|---------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data Sheet Identification | Product Status         | Definition                                                                                                                                                                                                                                                 |
| Objective Specification   | Formative or in Design | This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.                                                                                                         |
| Preliminary Specification | Preproduction Product  | This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product. |
| Product Specification     | Full Production        | This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.                                                      |

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

**Philips Semiconductors** 811 East Argues Avenue P.O. Box 3409 Sunnyvale, California 94088-3409 Telephone 800-234-7381

© Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

print code Document order number:

PHILIPS

Date of release: 05-96 9397-750-04435

Let's make things better.

