
INTEGRATED CIRCUITS

Product specification

1998 Sep 29

IC24 Data Handbook

20-bit buffer/line driver, non-inverting, with 30Ω termination resistors (3-State)

74ALVCH162827

FEATURES

- Complies with JEDEC standard no. 8-1A.
- CMOS low power consumption
- Direct interface with TTL levels
- Current drive ± 12 mA at 3.0 V
- MULTIBYTETM flow-through standard pin-out architecture
- Low inductance multiple V_{CC} and GND pins for minimum noise and ground bounce
- Integrated 30 Ω termination resistors

DESCRIPTION

The 74ALVCH162827 high-performance CMOS device combines low static and dynamic power dissipation with high speed and high output drive.

The 74ALVCH162827 20-bit buffers provide high performance bus interface buffering for wide data/address paths or buses carrying parity. They have NAND Output Enables (nOE1, nOE2) for maximum control flexibility.

The 74ALVCH162827 is designed with 30Ω series resistance in both the pull-up and pull-down output structures. This design reduces line noise in applications such as memory address drivers, clock drivers and bus receivers/transmitters.

To ensure the high impedance state during power up or power down, $\overline{\text{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking/current-sourcing capability of the driver.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

QUICK REFERENCE DATA GND = 0V; $T_{amb} = 25^{\circ}C$; $t_r = t_f = 2.5ns$

SYMBOL	PARAMETER	CONDITIO	TYPICAL	UNIT		
t _{PHL} /t _{PLH}	Propagation delay nAn to nYn	$V_{CC} = 2.5V, C_L = 30pF$ $V_{CC} = 3.3V, C_L = 50pF$		2.9 2.9	ns	
Cl	Input capacitance			5	pF	
C _{PD}	Power dissipation capacitance per latch	$V_{I} = GND$ to V_{CC}^{1}	Output enabled	14	۶F	
Срб	Tower dissipation capacitance per laten	VI = GIVE to VEC	Output disabled	3	pr	

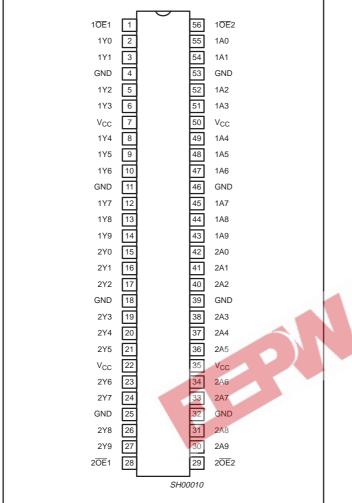
NOTES:

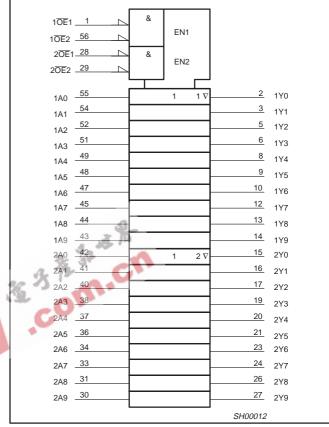
 C_{PD} is used to determine the dynamic power dissipation (P_D in μ W):

 $\begin{array}{l} \mathsf{P}_{D} = \mathsf{C}_{PD} \times \mathsf{V}_{CC}{}^2 \times \mathsf{f}_i + \Sigma \left(\mathsf{C}_L \times \mathsf{V}_{CC}{}^2 \times \mathsf{f}_0\right) \text{ where:} \\ \mathsf{f}_i = \mathsf{input} \text{ frequency in MHz; } \mathsf{C}_L = \mathsf{output} \text{ load capacity in pF;} \\ \mathsf{f}_o = \mathsf{output} \text{ frequency in MHz; } \mathsf{V}_{CC} = \mathsf{supply voltage in V;} \\ \Sigma \left(\mathsf{C}_L \times \mathsf{V}_{CC}{}^2 \times \mathsf{f}_o\right) = \mathsf{sum of outputs.} \end{array}$

ORDERING INFORMATION

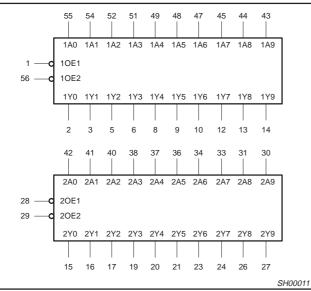
PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	DWG NUMBER
56-Pin Plastic TSSOP Type II	–40°C to +85°C	74ALVCH162827DGG	ACH162827DGG	SOT364-1


PIN DESCRIPTION


PIN NUMBER	SYMBOL	FUNCTION
55, 54, 52, 51, 49, 48, 47, 45, 44, 43, 42, 41, 40, 38, 37, 36, 34, 33, 31, 30	1A0 - 1A9 2A0 - 2A9	Data inputs
2, 3, 5, 6, 8, 9, 10, 12, 13, 14, 15, 16, 17, 19, 20, 21, 23, 24, 26, 27	1Y0 - 1Y9 2Y0 - 2Y9	Data outputs
1, 56, 28, 29	10E1 10E2, 20E1, 20E2	Output enable inputs (active-LOW)
4, 11, 18, 25, 32, 39, 46, 53	GND	Ground (0V)
7, 22, 35, 50	V _{CC}	Positive supply voltage

20-bit buffer/line driver, non-inverting, with 30Ω termination resistors (3-State)

74ALVCH162827


PIN CONFIGURATION

LOGIC SYMBOL (IEEE/IEC)

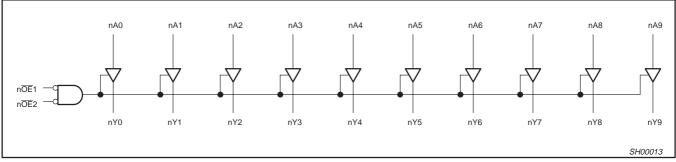
LOGIC SYMBOL

FUNCTION TABLE

	INPUTS		OUTPUT	OPERATING MODE
nOE1	n <mark>OE</mark> 2	nAn	nYn	
L	L	L	L	Transparent
L	L	Н	Н	Transparent
Н	Х	Х	Z	High impedance
Х	Н	Х	Z	High impedance

X = Don't care

Z = High impedance "off" state


H = High voltage level

L = Low voltage level

20-bit buffer/line driver, non-inverting, with 30Ω termination resistors (3-State)

74ALVCH162827

LOGIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	MIN	MAX	UNIT
N	DC supply voltage 2.5V range (for max. speed performance @ 30 pF output load)		2.3	2.7	V
V _{CC}	DC supply voltage 3.3V range (for max. speed performance @ 50 pF output load)		3.0	3.6	v
VI	DC Input voltage range	28 3	0	V _{CC}	V
Vo	DC output voltage range		0	V _{CC}	V
T _{amb}	Operating free-air temperature range		-40	+85	°C
t _r , t _f	Input rise and fall times	$V_{CC} = 2.3 \text{ to } 3.0 \text{V}$ $V_{CC} = 3.0 \text{ to } 3.6 \text{V}$	0 0	20 10	ns/V

ABSOLUTE MAXIMUM RATINGS

In accordance with the Absolute Maximum Rating System (IEC 134) Voltages are referenced to GND (ground = 0V)

SYMBOL PARAMETER CONDITIONS RATING UNIT DC supply voltage -0.5 to +4.6 V V_{CC} DC input diode current -50 mΑ IIK $V_{||} < 0$ VI Note 1 -0.5 to +4.6 V DC input voltage DC output diode current lok mΑ $V_{O} > V_{CC} \text{ or } V_{O} < 0$ ± 50 V Vo DC output voltage Note 1 -0.5 to V_{CC} +0.5 DC output source or sink current $V_{O} = 0$ to V_{CC} I_O mΑ ± 50 DC V_{CC} or GND current I_{GND}, I_{CC} mΑ $\pm\,100$ -65 to +150 °C T_{stg} Storage temperature range Power dissipation per package –plastic thin-medium-shrink (TSSOP) For temperature range: -40 to +125 °C mW P_{TOT} above +55°C derate linearly with 8 mW/K 600

NOTE:

1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

20-bit buffer/line driver, non-inverting, with 30Ω termination resistors (3-State)

74ALVCH162827

DC ELECTRICAL CHARACTERISTICS

Over recommended operating conditions. Voltage are referenced to GND (ground = 0 V).

			LIMITS				
SYMBOL	PARAMETER	TEST CONDITIONS	Temp =	= -40°C to +8	5°C		
			MIN	TYP ¹	MAX	AX	
		V _{CC} = 2.3 to 2.7V	1.7	1.2			
V _{IH}	HIGH level Input voltage	V _{CC} = 2.7 to 3.6V	2.0	1.5		l V	
		V _{CC} = 2.3 to 2.7V		1.2	0.7		
V _{IL}	LOW level Input voltage	V _{CC} = 2.7 to 3.6V		1.5	0.8	V	
		V_{CC} = 2.3 to 3.6V; V_I = V_{IH} or V_{IL} ; I_O = -100 μ A	V _{CC} -0.2	V _{CC}			
		V_{CC} = 2.3V; V_I = V_{IH} or V_{IL} ; I_O = -4mA	$V_{CC}-0.4$	V _{CC} _0.11		1	
		V_{CC} = 2.3V; V_I = V_{IH} or V_{IL} ; I_O = -6mA	V _{CC} -0.6	V _{CC} _0.17		1	
V _{OH}	HIGH level output voltage	$V_{CC} = 2.7V; V_I = V_{IH} \text{ or } V_{IL}; I_O = -4mA$	V _{CC} -0.5	V _{CC} -0.09		V	
		$V_{CC} = 2.7V; V_I = V_{IH} \text{ or } V_{IL}; I_O = -8mA$	V _{CC} -0.7	V _{CC} _0.19		1	
		$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL}; I_O = -6mA$	V _{CC} -0.6	V _{CC} _0.13		1	
		$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL}; I_O = -12mA$	V _{CC} -1.0	V _{CC} -0.27		1	
		$V_{CC} = 2.3 \text{ to } 3.6 \text{V}; V_{I} = V_{IH} \text{ or } V_{IL}; I_{O} = 100 \mu \text{A}$		GND	0.20		
		$V_{CC} = 2.3V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = 4mA$		0.07	0.40	1	
		V_{CC} = 2.3V; V_I = V_{IH} or V_{IL} ; I_O = 6mA		0.11	0.55	1	
V _{OL}	LOW level output voltage	$V_{CC} = 2.7V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = 4mA$		0.06	0.40	1 v	
		$V_{CC} = 2.7V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = 8mA$		0.13	0.60	1	
		$V_{CC} = 3.0V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = 6mA$		0.09	0.55	1	
		$V_{CC} = 3.0V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = 12mA$		0.19	0.80	1	
I _I	Input leakage current	$V_{CC} = 2.3 \text{ to } 3.6 \text{V};$ $V_I = V_{CC} \text{ or GND}$		0.1	5	μA	
I _{OZ}	3-State output OFF-state current	$ \begin{array}{l} V_{CC} = 2.3 \text{ to } 3.6 \text{V}; \text{V}_{\text{I}} = \text{V}_{\text{IH}} \text{ or } \text{V}_{\text{IL}}; \\ \text{V}_{\text{O}} = \text{V}_{CC} \text{ or } \text{GND} \end{array} $		0.1	10	μA	
I _{CC}	Quiescent supply current	V_{CC} = 2.3 to 3.6V; V_{I} = V_{CC} or GND; I_{O} = 0		0.2	40	μA	
ΔI_{CC}	Additional quiescent supply current	V_{CC} = 2.3V to 3.6V; V_{I} = V_{CC} – 0.6V; I_{O} = 0		150	750	μA	
I _{BHL}	Bus hold LOW sustaining current	$V_{CC} = 2.3V; V_I = 0.7V^2$	45	-		μA	
1		$V_{CC} = 2.3V; V_1 = 1.7V^2$	-45				
Івнн	Bus hold HIGH sustaining current	$V_{CC} = 3.0V; V_1 = 2.0V^2$	-75	-175		μA	
I _{BHLO}	Bus hold LOW overdrive current	$V_{CC} = 3.6 V^2$	500			μA	
I _{BHHO}	Bus hold HIGH overdrive current	$V_{CC} = 3.6 V^2$	-500			μA	

NOTES:

1. All typical values are at $T_{amb} = 25^{\circ}C$. 2. Valid for data inputs of bus hold parts.

20-bit buffer/line driver, non-inverting, with 30Ω termination resistors (3-State)

74ALVCH162827

AC CHARACTERISTICS FOR V_{CC} = 2.5V \pm 0.2V

 $GND = 0V; \ t_r = t_f \leq 2.0ns; \ C_L = 30pF$

				LIMITS		
SYMBOL	SYMBOL PARAMETER		V	UNIT		
			MIN	TYP ¹	MAX	
t _{PHL} /t _{PLH}	Propagation delay nAn to nYn	1, 3	1.0	2.9	4.6	ns
t _{PZH} /t _{PZL}	3-State output enable time nOEn to nYn	2, 3	1.4	3.9	6.4	ns
t _{PHZ} /t _{PLZ}	3-State output disable time nOEn to nYn	2,3	1.7	2.2	5.9	ns

NOTE:

1. All typical values are at V_{CC} = 2.5V and T_{amb} = 25^{\circ}C.

AC CHARACTERISTICS FOR V_{CC} = 3.0V \pm 0.3V

GND = 0V; t_r = t_f \leq 2.5ns; C_L = 50pF

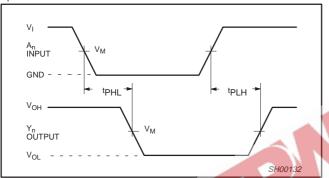
	SYMBOL PARAMETER WAVEFORM				LIMITS V _{CC} = 2.7V			
SYMBOL			V_{CC} = 3.3 ± 0.3 V				UNIT	
			MIN	TYP ^{1, 2}	MAX	TYP ¹	MAX	
t _{PHL} /t _{PLH}	Propagation delay nAn to nYn	1, 3	1.5	2.9	4.2	3.1	4.7	ns
t _{PZH} /t _{PZL}	3-State output enable time nOEn to nYn	2, 3	1.6	3.7	5.4	4.4	6.5	ns
t _{PHZ} /t _{PLZ}	3-State output disable time nOEn to nYn	2, 3	1.8	3.0	4.7	3.2	5.2	ns

NOTES:

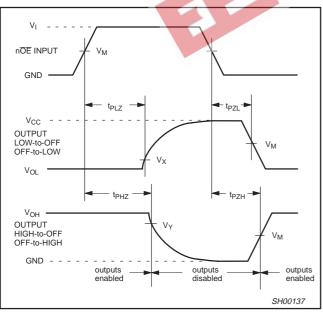
1. All typical values are at $V_{CC} T_{amb} = 25^{\circ}C.$ 2. Typical value is measured at $V_{CC} = 3.3V.$

SV00906

20-bit buffer/line driver, non-inverting, with 30Ω termination resistors (3-State)


74ALVCH162827

AC WAVEFORMS FOR V_{CC} = 2.3V TO 2.7V


 $V_{M} = 0.5 V_{CC}$ $V_{X} = V_{OL} + 0.15V$ $V_{Y} = V_{OH} - 0.15V$ $V_{OL} \text{ and } V_{OH} \text{ are the typical output voltage drop that occur with the output load.}$ $V_{I} = V_{CC}$

AC WAVEFORMS FOR V_{CC} = 3.0V TO 3.6V AND V_{CC} = 2.7V RANGE

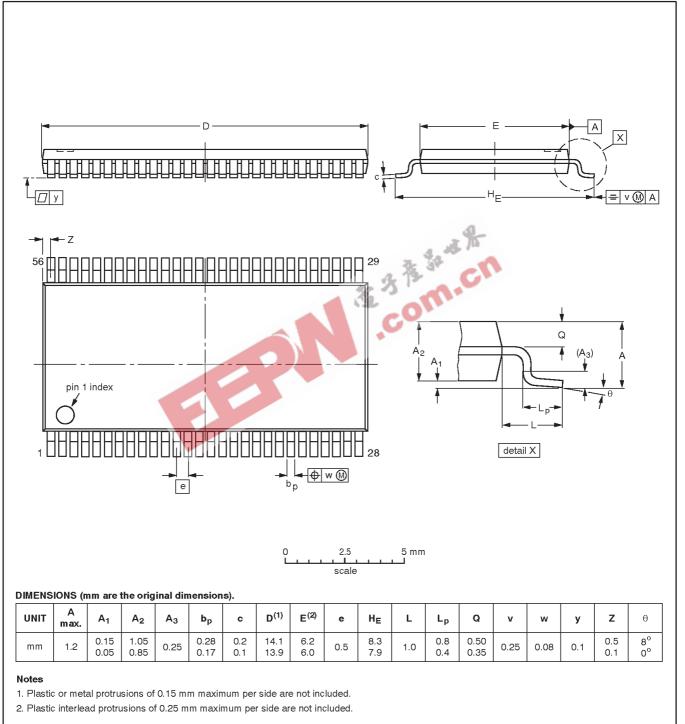
 $\begin{array}{l} V_M = 1.5 \ V \\ V_X = V_{OL} + 0.3 V \\ V_Y = V_{OH} - 0.3 V \\ V_{OL} \ and \ V_{OH} \ are \ the \ typical \ output \ voltage \ drop \ that \ occur \ with \ the \ output \ load. \\ V_I = 2.7 V \end{array}$

Waveform 1. Input (nAx) to Output (nYx) Propagation Delays

Waveform 2. 3-State Output Enable and Disable Times

TEST CIRCUIT AND WAVEFORM S₁ VCC $2 * V_{CC}$ 0 Open - GND $R_L = 500 \ \Omega$ ٧O Vı PULSE D.U.T. ٢ 0 GENERATOR Rт $R_L = 500 \ \Omega$ CI, Test Circuit for switching times DEFINITIONS R_L = Load resistor CL = Load capacitance includes jig and probe capacitance R_T = Termination resistance should be equal to Z_OUT of pulse generators. SWITCH POSITION TEST S₁ Vcc VI < 2.7V Open Vcc tрі н/**t**рні t_{PLZ}/t_{PZ} 2.7-3.6V 2.7V Vc 2

Waveform 3. Load circuitry for switching times


GND

tPHZ/tPZH

74ALVCH162827

20-bit buffer/line driver, non-inverting, with 30Ω termination resistors (3-State)

OUTLINE	REFERENCES				EUROPEAN		ISSUE DATE	
VERSION	IEC	JEDEC	EIAJ			PROJECTION	1550E DATE	
SOT364-1		MO-153EE					-93-02-03 95-02-10	

20-bit buffer/line driver, non-inverting, with 30Ω termination resistors (3-State)

Product specification

74ALVCH162827

NOTES

Product specification

20-bit buffer/line driver, non-inverting, with 30Ω termination resistors (3-State)

74ALVCH162827

		DEFINITIONS			
Data Sheet Identification	Product Status	Definition			
Objective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.			
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.			
Product Specification	Full Production	This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.			

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, devi or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors 811 East Argues Avenue P.O. Box 3409 Sunnyvale, California 94088-3409 Telephone 800-234-7381

© Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

> Date of release: 06-98 9397-750-04603

Let's make things better.

Document order number:

PHILIPS

