

January 2000 Revised January 2000

74LVTH16646 Low Voltage 16-Bit Transceiver/Register with 3-STATE Outputs

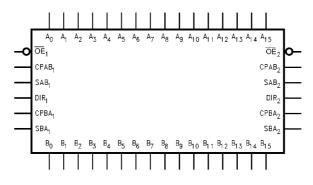
General Description

The LVTH16646 contains sixteen non-inverting bidirectional registered bus transceivers providing multiplexed transmission of data directly from the input bus or from the internal storage registers. Each byte has separate control inputs which can be shorted together for full 16-bit operation. The DIR inputs determine the direction of data flow through the device. The CPAB and CPBA inputs load data into the registers on the LOW-to-HIGH transition (see Functional Description).

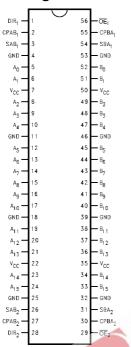
The LVTH16646 data inputs include bushold, eliminating the need for external pull-up resistors to hold unused inputs

These transceivers are designed for low-voltage (3.3V) V_{CC} applications, but with the capability to provide a TTL interface to a 5V environment. The LVTH16646 is fabricated with an advanced BiCMOS technology to achieve high speed operation similar to 5V ABT while maintaining low power dissipation.

Features


- Input and output interface capability to systems at 5V Vcc
- Bushold data inputs eliminate the need for external pull-up resistors to hold unused inputs
- Live insertion/extraction permitted
- Power Up/Down high impedance provides glitch-free bus loading
- Outputs source/sink -32 mA/+64 mA
- Functionally compatible with the 74 series 16646
- Latch-up performance exceeds 500 mA

Ordering Code:


	<u> </u>			
Order Number	Pa	ckage Nui	mber	Package Description
74LVTH16646MEA		MS56A		56-Lead Shrink Small Outline Package (SSOP), JEDEC MO-118, 0.300 Wide
74LVTH16646MTD		MTD56		56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbol

Connection Diagram

Pin Descriptions

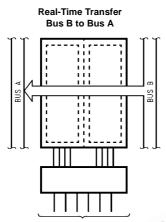
Pin Names	Description
A ₀ -A ₁₅	Data Register A Inputs/3-STATE Outputs
B ₀ -B ₁₅	Data Register B Inputs/3-STATE Outputs
CPAB _n , CPBA _n	Clock Pulse Inputs
SAB _n , SBA _n	Select Inputs
$\overline{OE}_1, \overline{OE}_2$	Output Enable Inputs
DIR _n	Direction Control Inputs

Truth Table(Note 1)

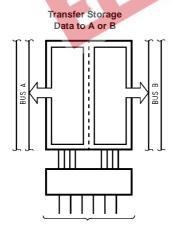
				-g				
A ₁₀ 17 40 B ₁₀								
		18 18		— GND				
		19		— В _{1 1}				
		2 20		— B _{1 2}				T. PA
		21		— B _{1 3}				- 74
		22		− v _{cc}				No. of the last of
	23 5 — 24		— B _{1.4} — B _{1.5}			×		
		5 D — 25		— GND		- 3		-473
		3, 26		— SBA ₂	1	•	-	
		3, 27		— CPBA ₂				om.cn
		28	29	- OE				
		`			I			
	-1.1.							
ruth T	apie(Note 1)						
		Inp	uts			Data	a I/O	
-		_		212				Output Operation Mode
OE ₁	DIR ₁	CPAB ₁	CPBA ₁	SAB ₁	SBA ₁	A ₀₋₇	B ₀₋₇	
Н	X	H or L	H or L	X	Х			
		H OI L	HULL	^	^			Isolation
Н	Х	ے اہ اما حر	X	X	X	Input	Input	Isolation Clock A _n Data into A Register
H H	X X					Input	Input	
		~	Х	Χ	X	Input	Input	Clock A _n Data into A Register
Н	Х	×	×	X X	X X	Input		Clock A _n Data into A Register Clock B _n Data Into B Register
H	X H	×	X X	X X L	X X			Clock A _n Data into A Register Clock B _n Data Into B Register A _n to B _n —Real Time (Transparent Mode)
H	X H H	X	X X X	X X L L	X X X			Clock A _n Data into A Register Clock B _n Data Into B Register A _n to B _n —Real Time (Transparent Mode) Clock A _n Data to A Register
H L L	X H H	X	x x x x	X X L L	X X X X			Clock A _n Data into A Register Clock B _n Data Into B Register A _n to B _n —Real Time (Transparent Mode) Clock A _n Data to A Register A Register to B _n (Stored Mode) Clock A _n Data into A Register and Output to B _n
H L L L	X H H H	X X Y Hor L X	X X X X X	X X L L H	X X X X X L	Input	Output	Clock A _n Data into A Register Clock B _n Data Into B Register A _n to B _n —Real Time (Transparent Mode) Clock A _n Data to A Register A Register to B _n (Stored Mode) Clock A _n Data into A Register and Output to B _n B _n to A _n —Real Time (Transparent Mode)
H L L L	X H H H	X X -> H or L	X X X X X	X X L L H	X X X X X L L			Clock A _n Data into A Register Clock B _n Data Into B Register A _n to B _n —Real Time (Transparent Mode) Clock A _n Data to A Register A Register to B _n (Stored Mode) Clock A _n Data into A Register and Output to B _n B _n to A _n —Real Time (Transparent Mode) Clock B _n Data into B Register
H L L L	H H H L L	X X Hor L X X	x x x x x	X X L H H X	X X X X X L	Input	Output	Clock A _n Data into A Register Clock B _n Data Into B Register A _n to B _n —Real Time (Transparent Mode) Clock A _n Data to A Register A Register to B _n (Stored Mode) Clock A _n Data into A Register and Output to B _n B _n to A _n —Real Time (Transparent Mode)

H = HIGH Voltage Level

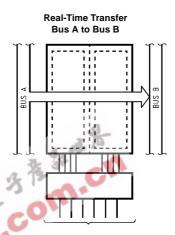
Note 1: The data output functions may be enabled or disabled by various signals at the $\overline{\text{OE}}$ and DIR inputs. Data input functions are always enabled; i.e., data at the bus pins will be stored on every LOW-to-HIGH transition of the appropriate clock inputs. Also applies to data I/O (A and B: 8-15) and #2 control

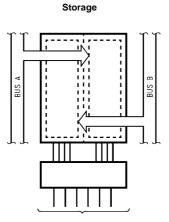

X = Immaterial L = LOW Voltage Level

^{∠ =} LOW-to-HIGH Transition.


Functional Description

In the transceiver mode, data present at the HIGH impedance port may be stored in either the A or B register or both. The select $(\mathsf{SAB}_n,\ \mathsf{SBA}_n)$ controls can multiplex stored and real-time. The examples shown below demonstrate the four fundamental bus-management functions that can be performed.


The direction control (DIRn) determines which bus will receive data when \overline{OE}_n is LOW. In the isolation mode (\overline{OE}_n HIGH), A data may be stored in one register and/or B data may be stored in the other register. When an output function is disabled, the input function is still enabled and may be used to store and transmit data. Only one of the two busses, A or B, may be driven at a time.


OE DIR CPAB CPBA SAB SBA

OE DIR CPAB CPBA SAB SBA
L L X HorL X H
L H HorL X H X

OE DIR CPAB CPBA SAB SBA

OE DIR CPAB CPBA SAB SBA L Н Χ L Χ Χ Χ L L L Н Χ Χ Χ Χ Χ Χ Н Х Х

Absolute Maximum Ratings(Note 2)							
Symbol	Parameter	Value	Conditions	Units			
V _{CC}	Supply Voltage	-0.5 to +4.6		V			
VI	DC Input Voltage	-0.5 to +7.0		V			
Vo	DC Output Voltage	-0.5 to +7.0	Output in 3-STATE	V			
		-0.5 to +7.0	Output in HIGH or LOW State (Note 3)	V			
I _{IK}	DC Input Diode Current	-50	V _I < GND	mA			
I _{OK}	DC Output Diode Current	-50	V _O < GND	mA			
Io	DC Output Current	64	V _O > V _{CC} Output at HIGH State	mA			
		128	V _O > V _{CC} Output at LOW State	IIIA			
I _{CC}	DC Supply Current per Supply Pin	±64		mA			
I _{GND}	DC Ground Current per Ground Pin	±128		mA			
Тото	Storage Temperature	-65 to +150		°C.			

Recommended Operating Conditions

Symbol	Parameter	Min	Max	Units
V _{CC}	Supply Voltage	2.7	3.6	V
VI	Input Voltage	0	5.5	V
I _{OH}	HIGH-Level Output Current		-32	mA
I _{OL}	LOW-Level Output Current		64	1117 (
T _A	Free-Air Operating Temperature	-40	85	°C
Δt/ΔV	Input Edge Rate, V _{IN} = 0.8V–2.0V, V _{CC} = 3.0V	0	10	ns/V

Note 2: Absolute Maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum rated conditions is not implied.

Note 3: I_O Absolute Maximum Rating must be observed.

DC Electrical Characteristics

		V	T _A = -40°	C to +85°C			
Symbol	Parameter	V _{CC} (V)	Min Max		Units	Conditions	
V _{IK}	Input Clamp Diode Voltage		2.7		-1.2	V	I _I = -18 mA
V _{IH}	Input HIGH Voltage		2.7-3.6	2.0		V	V _O ≤ 0.1V or
V _{IL}	Input LOW Voltage		2.7-3.6		0.8	v	$V_O \ge V_{CC} - 0.1V$
V _{OH}	Output HIGH Voltage		2.7-3.6	V _{CC} - 0.2		V	$I_{OH} = -100 \mu\text{A}$
			2.7	2.4		V	$I_{OH} = -8 \text{ mA}$
			3.0	2.0		V	I _{OH} = -32 mA
V _{OL}	Output LOW Voltage		2.7		0.2	V	I _{OL} = 100 μA
			2.7		0.5	V	I _{OL} = 24 mA
			3.0		0.4	V	I _{OL} = 16 mA
			3.0		0.5	V	I _{OL} = 32 mA
			3.0		0.55	V	I _{OL} = 64 mA
I _{I(HOLD)}	Bushold Input Minimum Driv	/e	3.0	75		μΑ	V _I = 0.8V
				-75		μΑ	V _I = 2.0V
I _{I(OD)}	Bushold Input Over-Drive		3.0	500		μΑ	(Note 4)
	Current to Change State			-500		μΑ	(Note 5)
lį	Input Current		3.6		10	μА	V _I = 5.5V
		Control Pins	3.6	.79	±1	μА	$V_1 = 0V$ or V_{CC}
		Data Pins	3.6	40 2	-5	μΑ	V _I = 0V
				32	100	μА	$V_I = V_{CC}$
I _{OFF}	Power Off Leakage Current		0	-	±100	μΑ	$0V \le V_I \text{ or } V_O \le 5.5V$
I _{PU/PD}	Power Up/Down 3-STATE		0-1.5V		±100	μА	V _O = 0.5V to 3.0V
	Output Current		0-1.50		±100	μΑ	$V_I = GND \text{ or } V_{CC}$
I _{OZL}	3-STATE Output Leakage C	urrent	3.6		-5	μΑ	$V_0 = 0.0V$
I _{OZH}	3-STATE Output Leakage C	urrent	3.6		5	μΑ	V _O = 3.6V
I _{OZH} +	3-STATE Output Leakage C	urrent	3.6		10	μΑ	$V_{CC} < V_O \le 5.5V$
I _{CCH}	Power Supply Current		3.6		0.19	mA	Outputs HIGH
I _{CCL}	Power Supply Current		3.6		5	mA	Outputs LOW
I _{CCZ}	Power Supply Current		3.6		0.19	mA	Outputs Disabled
I _{CCZ} +	Power Supply Current		3.6		0.19	mA	$V_{CC} \le V_O \le 5.5V$,
							Outputs Disabled
ΔI_{CC}	Increase in Power Supply C	urrent	3.6		0.2	mA	One Input at V _{CC} – 0.6V

Note 4: An external driver must source at least the specified current to switch from LOW-to-HIGH.

Dynamic Switching Characteristics (Note 7)

0	B	V _{CC}	T _A = 25°C			11-11-	Conditions C ₁ = 50 pF,	
Symbol	Parameter	(V)	Min	Тур	Max	Units	$R_L = 500\Omega$	
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	3.3		0.8		V	(Note 8)	
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	3.3		-0.8		V	(Note 8)	

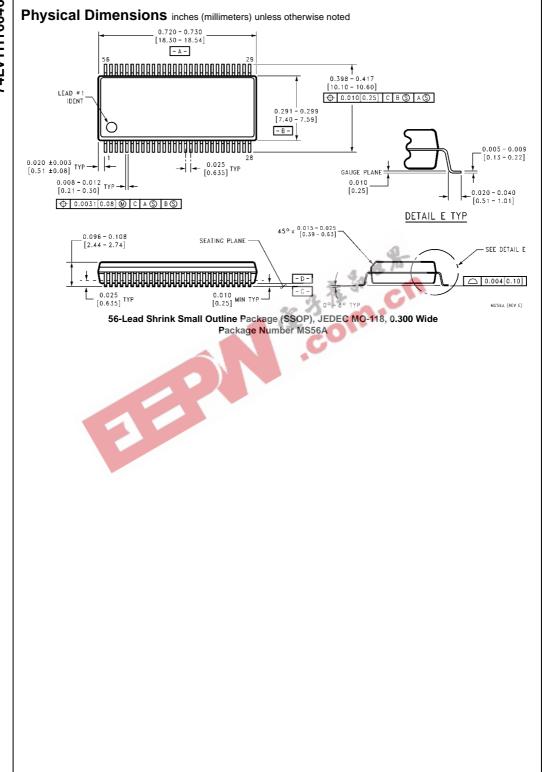
Note 7: Characterized in SSOP package. Guaranteed parameter, but not tested.

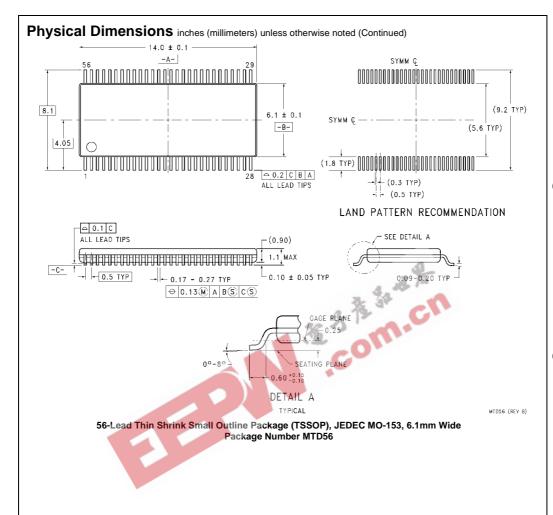
Note 8: Max number of outputs defined as (n). n–1 data inputs are driven 0V to 3V. Output under test held LOW.

 $[\]begin{tabular}{ll} \textbf{Note 5:} An external driver must sink at least the specified current to switch from HIGH-to-LOW. \end{tabular}$

 $[\]textbf{Note 6:} \ \ \textbf{This is the increase in supply current for each input that is at the specified voltage level rather than V_{CC} \ or \ GND.$

AC Electrical Characteristics


Symbol		Parameter		Units			
Symbol		Parameter	V _{CC} = 3.	3 ± 0.3V	V _{CC} =	Ullits	
			Min	Max	Min	Max	
f _{MAX}	Maximum Clock Fred	quency	150		150		MHz
t _{PLH}	Propagation Delay		1.3	5.4	1.3	5.9	ns
t _{PHL}	CPAB or CPBA to A	or B	1.3	5.2	1.3	5.8	115
t _{PLH}	Propagation Delay	1.0	4.4	1.0	4.7	ns	
t _{PHL}	Data to A or B		1.0	4.6	1.0	5.1	115
t _{PLH}	Propagation Delay		1.0	4.6	1.0	5.4	
t _{PHL}	SBA or SAB to A or I	3	1.0	4.8	1.0	5.6	ns
t _{PZH}	Output Enable Time		1.0	4.7	1.0	5.4	ns
t _{PZL}	OE to A or B		1.0	5.1	1.0	6.0	115
t _{PHZ}	Output Disable Time		2.0	5.6	2.0	6.1	
t _{PLZ}	OE to A or B		2.0	5.4	2.0	6.1	ns
t _{PZH}	Output Enable Time		1.0	4.9	1.0	5.4	ns
t _{PZL}	DIR to A or B		1.0	5.4	1.0	6.4	115
t _{PHZ}	Output Disable Time		1.5	6.4	1.5	7.1	ns
t _{PLZ}	DIR to A or B		1.5	5.4	1.5	5.9	113
t _W	Pulse Duration	CPAB or CPBA HIGH or LOW	3.3	79	3.3		ns
t _S	Setup Time	A or B before CPAB or CPBA, Data HIGH	1.2	- 40	1.5		ns
		A or B before CPAB or CPBA, Data LOW	2.0		2.8		113
t _H	Hold Time	A or B after CPAB or CPBA, Data HIGH	0.5		0.0		ns
		A or B after CPAB or CPBA, Data LOW	r CPBA, Data LOW 0.5 0.5			ns	
toshl	Output to Output Ske	ew (Note 9)		1.0		1.0	ns
t _{OSLH}				1.0		1.0	110


Note 9: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (toshl) or LOW-to-HIGH (tosth).

Capacitance (Note 10)

Symbol	Parameter	Conditions	Typical	Units
C _{IN}	Input Capacitance	$V_{CC} = Open, V_I = 0V \text{ or } V_{CC}$	4	pF
C _{I/O}	Input/Output Capacitance	$V_{CC} = 3.0V$, $V_{O} = 0V$ or V_{CC}	8	pF

Note 10: Capacitance is measured at frequency f = 1 MHz, per MIL-STD-883, Method 3012.

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com