=AIRCHILD

SEMICONDUCTOR

74VHC27 **Triple 3-Input NOR Gate**

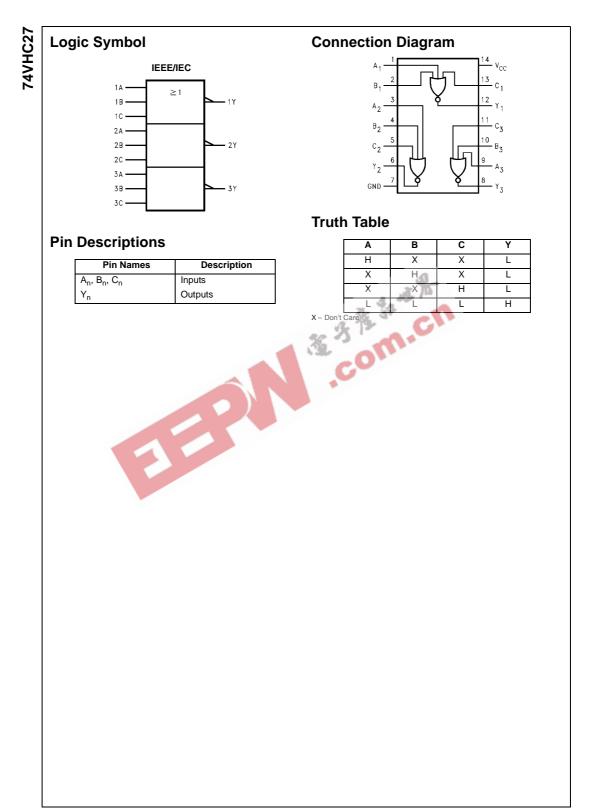
General Description

The VHC27 is an advanced high speed CMOS 3-Input NOR Gate fabricated with silicon gate CMOS technology. It achieves the high-speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation.

The internal circuit is composed of 3 stages including buffer output, which provide high noise immunity and stable output. An input protection circuit insures that 0V to 7V can be applied to the input pins without regard to the supply voltage. This device can be used to interface 5V to 3V systems and two supply systems such as battery backup. This circuit prevents device destruction due to mismatched supply and input voltages.

July 1994 Revised February 2005

Features


- High speed: t_{PD} = 4.1 ns (typ) at T_A = 25°C
- \blacksquare Low power dissipation: I_{CC} = 2 μA (max) at T_A = 25°C
- $\blacksquare \text{ High noise immunity: } V_{NIH} = V_{NIL} = 28\% V_{CC} \text{ (min)}$
- Power down protection is provided on all inputs
- Low noise: V_{OLP} = 0.8V (max)
- Pin and function compatible with 74HC27

Ordering Code:

applied to the input age. This device ca and two supply sys cuit prevents device and input voltages.	pins without r n be used to in tems such as destruction de	Pin and function compatible with 74HC27 egard to the supply volt- terface 5V to 3V systems battery backup. This cir- te to mismatched supply
Ordering Co	ode:	CON
Order Number	Package	Package Description
	Number	. Kongo zoonipion
74VHC27M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
74VHC27MX_NL	M14A	Pb-Free 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
(Note 1)		
74VHC27SJ	M14D	Pb-Free 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74VHC27MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74VHC27N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Surface mount packages are also available on Tape and Reel. Specify by appending the suffix letter "X" to the ordering code. Pb-Free package per JEDED J-STD-020B.

Note 1: " NL" indicates Pb-Free package (per JEDEC J-STD-020B). Device available in Tape and Reel only.

Absolute Maximum Ratings(Note 2)

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Voltage (VIN)	-0.5V to +7.0V
DC Output Voltage (V _{OUT})	–0.5V to V _{CC} + 0.5V
Input Diode Current (I _{IK})	–20 mA
Output Diode Current (I _{OK})	±20 mA
DC Output Current (I _{OUT})	±25 mA
DC V _{CC} /GND Current (I _{CC})	±50 mA
Storage Temperature (T _{STG})	-65°C to +150°C
Lead Temperature (TL)	
(Soldering, 10 seconds)	260°C

Recommended Operating Conditions (Note 3)

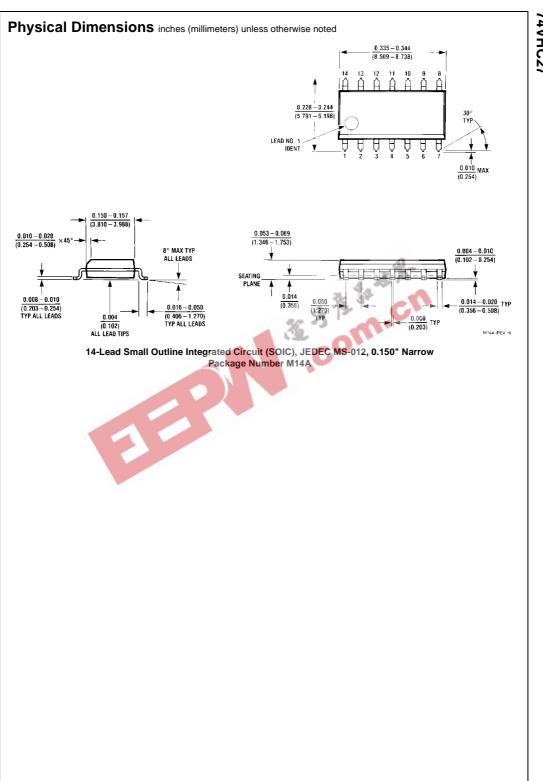
Supply Voltage (V _{CC})	2.0V to +5.5V
Input Voltage (V _{IN})	0V to +5.5V
Output Voltage (V _{OUT})	0V to V _{CC}
Operating Temperature (T _{OPR})	-40°C to +85°C
Input Rise and Fall Time (t_r, t_f)	
$V_{CC}=3.3V\pm0.3V$	0 ns/V ~ 100 ns/V
$V_{CC} = 5.0V \pm 0.5V$	0 ns/V ~ 20 ns/V
Note 2: Absolute Maximum Ratings are v	alues beyond which the device

74VHC27

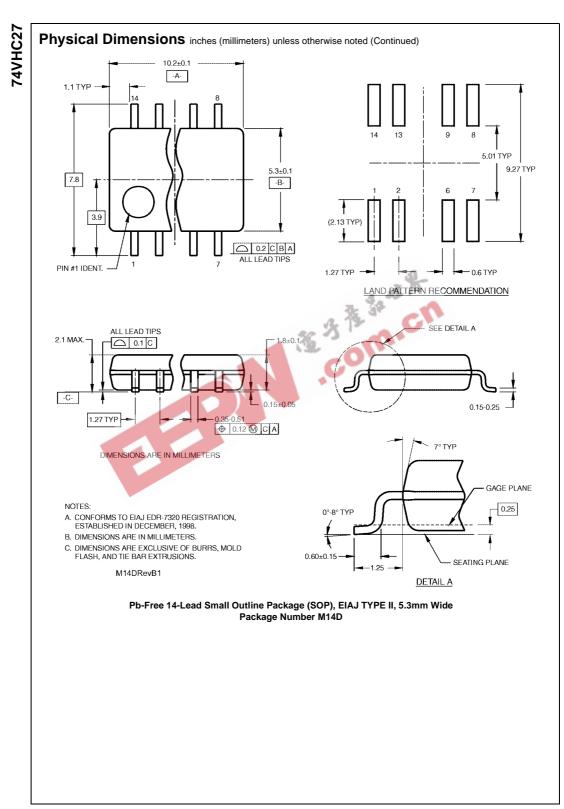
Note 2: Absolute Maximum Ratings are values beyond which the device may be damaged or have its useful life impaired. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside databook specifications.

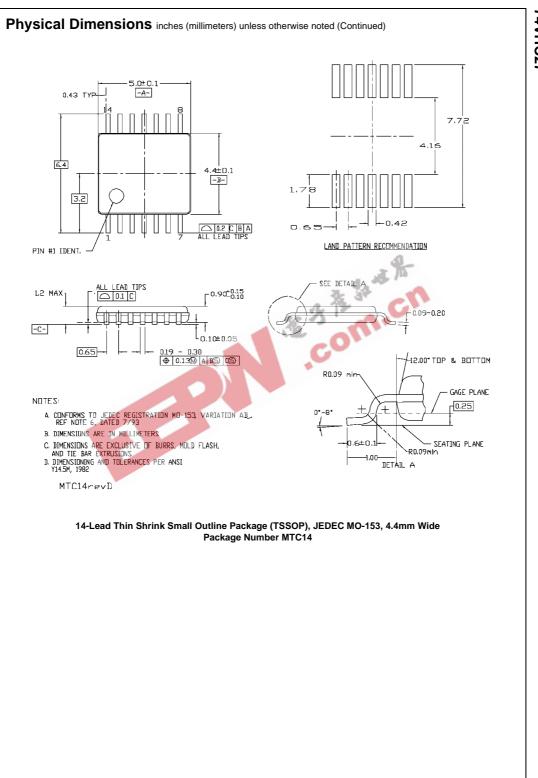
Note 3: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

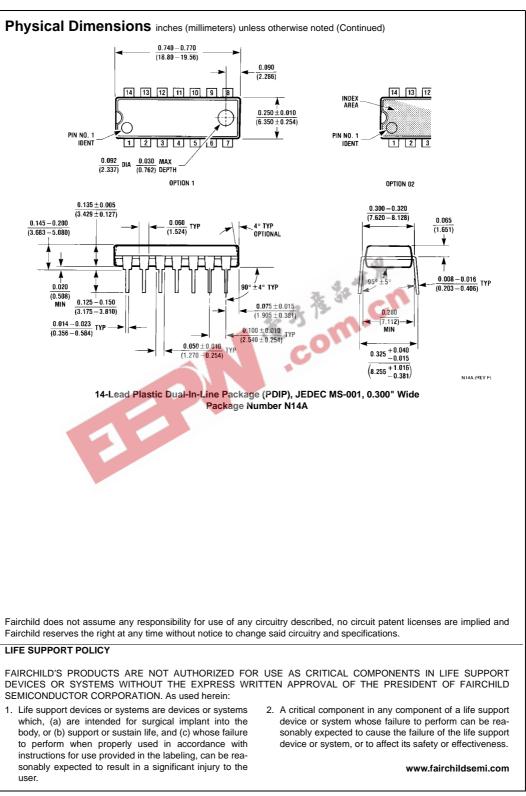

Symbol	Parameter	V_{CC} $T_A = 25^{\circ}C$		T _A = -40°C to +85°C			Conditions			
	, and the second	(V)	Min Typ Max		Min Max		- of			
VIH	HIGH Level	2.0	1.50			1.50		V		
	Input Voltage	3.0 - 5.5	0.7 V _{CC}			0.7 V _{CC}	y _	C		
V _{IL}	LOW Level	2.0			0.50		0.50	V		
	Input Voltage	3.0 - 5.5			0.3 V _{CC}		0.3 V _{CC}	v		
V _{OH}	HIGH Level	2.0	1.9	2.0		1.9			$V_{IN} = V_{IH}$	I _{OH} =50 μA
	Output Voltage	3.0	2.9	3.0		2.9		V	or V _{IL}	
		4.5	4.4	4.5		4.4				
		3.0	2.58			2.48		V		I _{OH} = -4 mA
		4.5	3.94			3.80		v		I _{OH} =8 mA
V _{OL}	LOW Level	2.0		0.0	0.1		0.1		$V_{IN} = V_{IH}$	I _{OL} = 50 μA
	Output Voltage	3.0		0.0	0.1		0.1	V	or V _{IL}	
		4.5		0.0	0.1		0.1			
		3.0			0.36		0.44	V		$I_{OL} = 4 \text{ mA}$
		4.5			0.36		0.44	v		$I_{OL} = 8 \text{ mA}$
I _{IN}	Input Leakage Current	0 - 5.5			±0.1		±1.0	μA	$V_{IN} = 5.5V \text{ or}$	GND
I _{CC}	Quiescent Supply Current	5.5			2.0		20.0	μA	$V_{IN} = V_{CC}$ or (GND

Noise Characteristics


Symbol	Parameter	V _{CC}	Τ _Α	= 25°C	Units	Conditions	
Cymbol	l'alameter	(V)	Тур	Limits			
V _{OLP}	Quiet Output Maximum	5.0	0.3	0.8	V	C _L = 50 pF	
(Note 4)	Dynamic V _{OL}						
V _{OLV}	Quiet Output Minimum	5.0	-0.3	-0.8	V	C _L = 50 pF	
(Note 4)	Dynamic V _{OL}						
V _{IHD}	Minimum HIGH Level	5.0		3.5	V	C _L = 50 pF	
(Note 4)	Dynamic Input Voltage						
V _{ILD}	Maximum LOW Level	5.0		1.5	V	C _L = 50 pF	
(Note 4)	Dynamic Input Voltage						


Note 4: Parameter guaranteed by design.

Symbol	Parameter	V _{CC}		T _A = 25°C		$T_{A} = -40^{\circ}$	C to +85°C		Conditions
DUI		(V)	Min	Тур	Max	Min	Max	Units	
FILL	Propagation Delay	$\textbf{3.3}\pm\textbf{0.3}$		6.2	8.8	1.0	10.5		$C_L = 15 \text{ pF}$
t _{PLH}				8.7	12.3	1.0	14.0	ns	$C_L = 50 \text{ pF}$
		5.0 ± 0.5		4.1	5.9	1.0	7.0		C _L = 15 pF
		-		5.6	7.9	1.0	9.0	ns	$C_L = 50 \text{ pF}$
C _{IN}	Input Capacitance			4	10		10	pF	V _{CC} = Open
C _{PD}	Power Dissipation			20				pF	(Note 5)
	Capacitance								
				3	3	om			



74VHC27

74VHC27

