

Truth Tables Inputs OE1 L L H OE2 L H OE2 L H OE3 L

L

н

 $\overline{\mathsf{OE}}_4$

L

L

н

H = HIGH Voltage Level L = LOW Voltage Level

X = Immaterial Z = High Impedance

Functional Description

The ABT16244 contains sixteen non-inverting buffers with 3-STATE outputs. The device is nibble (4 bits) controlled with each nibble functioning identically, but independent of the other. The control pins can be shorted together to obtain full 16-bit operation.

Logic Diagram

Outputs

O₀-O₃

L

н

Ζ

Outputs

0₄-0₇

L

н

z

Outputs

0₈-0₁₁

L

н

Ζ

Outputs

O₁₂-O₁₅

Ļ

н

z

3

I₀–I₃

L

н

Х

I₄–I₇

L

Н

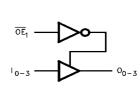
Х

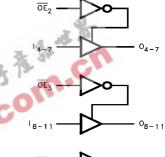
I₈–I₁₁

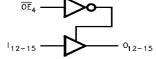
L

н

Х


I₁₂–I₁₅


L


Н

Х

Inputs

Absolute Maximum Ratings(Note 1)

Storage Temperature	-65°C to +150°C
Ambient Temperature under Bias	-55°C to +125°C
Junction Temperature under Bias	-55°C to +150°C
V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to +7.0V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Any Output	
in the Disabled or	
Power-Off State	-0.5V to 5.5V
in the HIGH State	–0.5V to V_{CC}
Current Applied to Output	
in LOW State (Max)	twice the rated I _{OL} (mA)
DC Latchup Source Current	–500 mA
Over Voltage Latchup (I/O)	10V

Recommended Operating Conditions

Free Air Ambient Temperature	-40°C to +85°C
Supply Voltage	+4.5V to +5.5V
Minimum Input Edge Rate ($\Delta V / \Delta t$)	
Data Input	50 mV/ns
Enable Input	20 mV/ns

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

2

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Para	ameter	Min	Тур	Max	Units	V _{CC}	Conditions
VIH	Input HIGH Voltage		2.0			V		Recognized HIGH Signal
VIL	Input LOW Voltage				0.8	V		Recognized LOW Signal
V _{CD}	Input Clamp Diode Vo	tage			-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH Voltage		2.5		-	V	Min	I _{OH} = -3 mA
			2.0		0	V	Min	I _{OH} = -32 mA
V _{OL}	Output LOW Voltage		N		0.55	V	Min	I _{OL} = 64 mA
I _{IH}	Input HIGH Current				1	μA	Max	V _{IN} = 2.7V (Note 3)
				-	1	μΛ	IVIAA	$V_{IN} = V_{CC}$
I _{BVI}	Input HIGH Current				7	μA	Max	V _{IN} = 7.0V
	Breakdown Test				,	μΛ	IVICA	v _{IN} - 7.0 v
IIL	Input LOW Current				-1	μA	Max	V _{IN} = 0.5V (Note 3)
					-1			$V_{IN} = 0.0V$
V _{ID}	Input Leakage Test		4.75			V	0.0	I _{ID} = 1.9 μA
								All Other Pins Grounded
I _{OZH}	Output Leakage Curre	nt			10	μΑ	0-5.5V	$V_{OUT} = 2.7V; \overline{OE}_n = 2.0V$
I _{OZL}	Output Leakage Curre	nt			-10	μΑ	0-5.5V	$V_{OUT} = 0.5V; \overline{OE}_n = 2.0V$
I _{OS}	Output Short-Circuit C	urrent	-100		-275	mA	Max	$V_{OUT} = 0.0V$
I _{CEX}	Output HIGH Leakage	Current			50	μΑ	Max	$V_{OUT} = V_{CC}$
I _{ZZ}	Bus Drainage Test				100	μΑ	0.0	$V_{OUT} = 5.5V$
								All Other Pins GND
I _{CCH}	Power Supply Current				2.0	mA	Max	All Outputs HIGH
I _{CCL}	Power Supply Current				60	mA	Max	All Outputs LOW
I _{CCZ}	Power Supply Current				2.0	mA	Max	$\overline{OE}_n = V_{CC}$
								All Others at V _{CC} or GND
I _{CCT}	Additional I _{CC} /Input	Outputs Enabled			2.5	mA		$V_I = V_{CC} - 2.1V$
		Outputs 3-STATE			2.5	mA	Max	Enable Input $V_I = V_{CC} - 2.1V$
		Outputs 3-STATE			50	μA		Data Input V _I = V _{CC} - 2.1V
								All Others at V _{CC} or GND
CCD	Dynamic I _{CC}	No Load				mA/		Outputs Open, $\overline{OE}_n = GND$
	(Note 3)				0.1	MHz	Max	One Bit Toggling,
								50% Duty Cycle

Note 3: Guaranteed but not tested.

DC Electrical Characteristics

Symbol	Parameter	Min	Тур	Max	Units	v _{cc}	Conditions C _L = 50 pF, R _L = 500 Ω	
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}		0.4	0.7	V	5.0	$T_A = 25^{\circ}C$ (Note 4)	
V _{OLV}	Quiet Output Minimum Dynamic VOL	-1.3	-1.0		V	5.0	$T_A = 25^{\circ}C$ (Note 4)	
V _{OHV}	Minimum HIGH Level Dynamic Output Voltage	2.7	3.0		V	5.0	$T_A = 25^{\circ}C$ (Note 5)	
V _{IHD}	Minimum HIGH Level Dynamic Input Voltage	2.0	1.4		V	5.0	T _A = 25°C (Note 6)	
VILD	Maximum LOW Level Dynamic Input Voltage		1.2	0.8	V	5.0	$T_A = 25^{\circ}C$ (Note 6)	
Note 4: Ma	Note 4: Max number of outputs defined as (n). n-1 data inputs are driven 0V to 3V. One output at LOW. Guaranteed, but not tested.							

Note 5: Max number of outputs defined as (n). n – 1 data inputs are driven 0V to 3V. One output HIGH. Guaranteed, but not tested.

Note 6: Max number of data inputs (n) switching. n-1 inputs switching 0V to 3V. Input-under-test switching: 3V to threshold (V_{ILD}), 0V to threshold (V_{IHD}). Guaranteed, but not tested.

AC Electrical Characteristics

Symbol	Parameter	T _A =+25°C V _{CC} =+5V C _L = 50 pF			T _A = -40°C V _{CC} = 4. C _L =	Units	
	Min	Тур	Max	Min	Max		
t _{PLH}	Propagation	1.0	2.3	3.9	1.0	3.9	20
t _{PHL}	Delay Data to Outputs	1.0	2.7 🦼	3.9	1.0	3.9	ns
t _{PZH}	Output Enable	1.5	3.5	6.3	1.5	6.3	ns
t _{PZL}	Time	1.5	3.5	6.3	1.5	6.3	115
t _{PHZ}	Output Disable	1.0	4.2	6.7	1.0	6.7	ns
t _{PLZ}	Time	1.0	3.2	6.7	1.0	6.7	115

Extended AC Electrical Characteristics

			40°C to +85°	С	T _A = -40°	C to +85°C	T _A = -40°	C to +85°C	
	V	V _{CC} = 4.5V-5.5V		V _{CC} = 4.5V–5.5V		$V_{CC}=4.5V5.5V$			
Symbol	Symbol Parameter		C _L = 50 pF		C _L = 250 pF		C _L = 250 pF		Units
Symbol	Falanetei	16 Outputs Switching (Note 7)		1 Output Switching (Note 8)		16 Outputs Switching (Note 9)			
		Min	Тур	Max	Min	Max	Min	Max	
f _{TOGGLE}	Max Toggle Frequency		100						MHz
t _{PLH}	Propagation Delay	1.5		5.0	1.5	6.0	2.5	8.0	ns
t _{PHL}	Data to Outputs	1.5		5.3	1.5	6.0	2.5	8.0	115
t _{PZH}	Output Enable Time	1.5		6.5	2.5	7.8	2.5	9.5	ns
t _{PZL}		1.5		6.5	2.5	7.8	2.5	8.5	115
t _{PHZ}	Output Disable Time	1.0		6.7	(Not	≏ 10)	(Not	e 10)	ns
t _{PLZ}		1.0		6.7	(Note 10) (Note 10)		115		

Note 7: This specification is guaranteed but not tested. The limits apply to propagation delays for all paths described switching in phase (i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.).

Note 8: This specification is guaranteed but not tested. The limits represent propagation delay with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load. This specification pertains to single output switching only.

Note 9: This specification is guaranteed but not tested. The limits represent propagation delays for all paths described switching in phase (i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.) with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load.

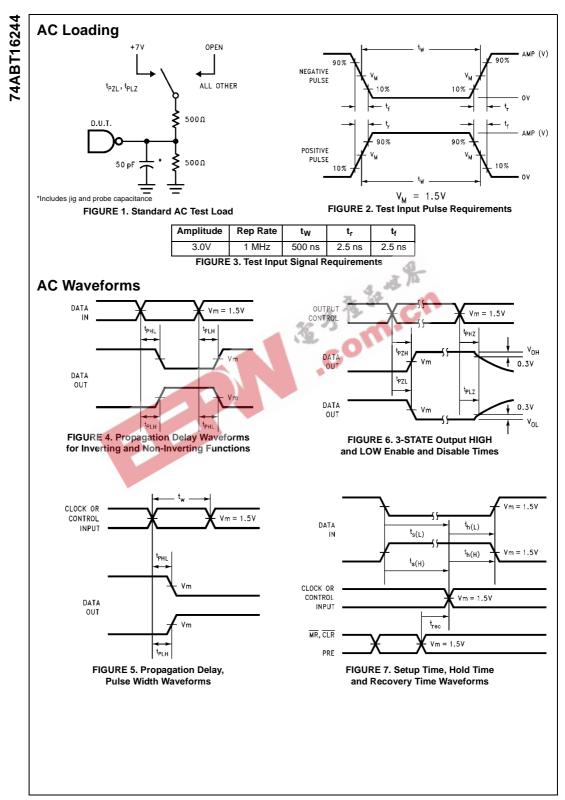
Note 10: The 3-STATE delay times are dominated by the RC network (500Ω, 250 pF) on the output and have been excluded from the datasheet.

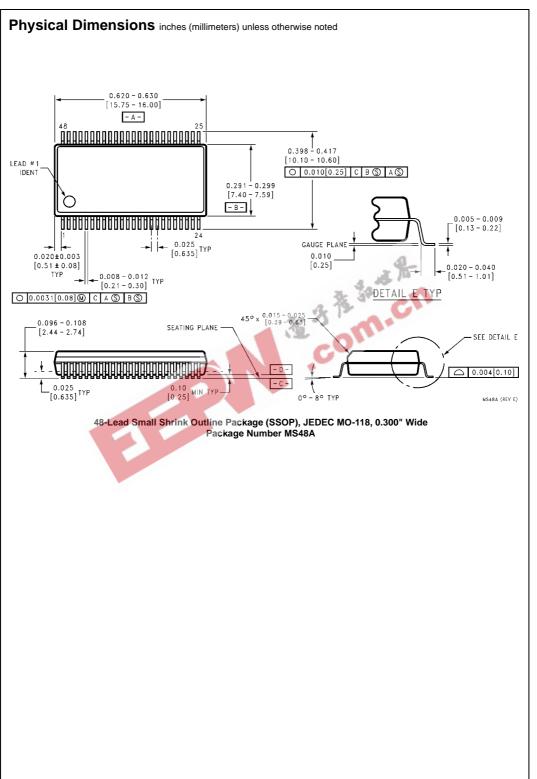
		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ $V_{CC} = 4.5V - 5.5V$	$T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C$ $V_{CC} = 4.5V - 5.5V$	
Symbol	Symbol Parameter	C _L = 50 pF 16 Outputs Switching	C _L = 250 pF 16 Outputs Switching	Units
		(Note 11)	(Note 12)	
		Max	Max	
t _{OSHL} (Note 13)	Pin to Pin Skew HL Transitions	1.0	1.5	ns
t _{OSLH} Note 13)	Pin to Pin Skew LH Transitions	1.0	1.5	ns
^t PS Note 14)	Duty Cycle LH-HL Skew	1.5	1.5	ns
t _{OST} Note 13)	Pin to Pin Skew LH/HL Transitions	1.7	2.0	ns
^t PV Note 15)	Device to Device Skew LH/HL Transitions	2.0	2.5	ns
(1000 10)				1

Note 11: This specification is guaranteed but not tested. The limits apply to propagation delays for all paths described switching in phase (i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.)

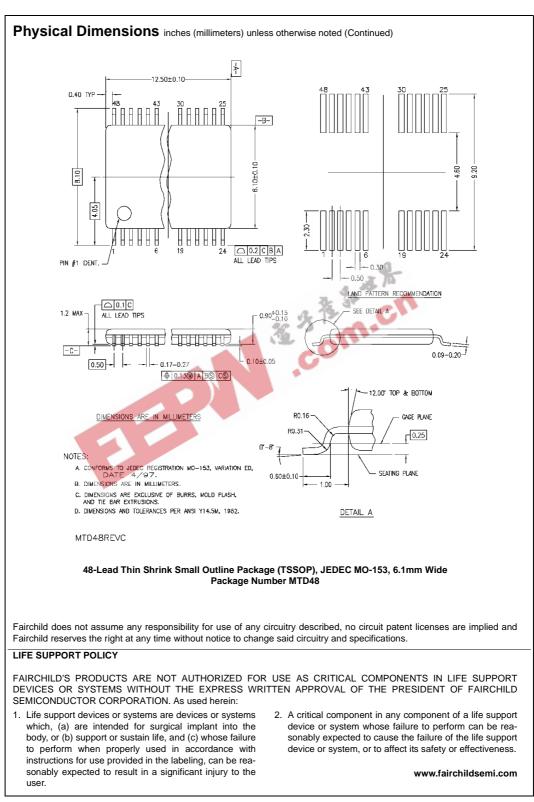
Note 12: These specifications guarance but not tested. The limits represent propagation delays with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load.

Note 13: Skew is defined as the absolute value of the difference between the actual propagation delays for any two separate outputs of the same device. The specification applies to any outputs switching HIGH to LOW (t_{OSHL}), LOW-to-HIGH (t_{OSLH}), or any combination switching LOW-to-HIGH and/or HIGH-to-LOW (t_{OSTL}). The specification is guaranteed but not tested.


Note 14: This describes the difference between the delay of the LOW-to-HIGH and the HIGH-to-LOW transition on the same pin. It is measured across all the outputs (drivers) on the same chip, the worst (largest delta) number is the guaranteed specification. This specification is guaranteed but not tested. Note 15: Propagation delay variation for a given set of conditions (i.e., temperature and V_{CC}) from device to device. This specification is guaranteed but not tested.


Capacitance

Symbol	Parameter	Тур	Units	Conditions T _A = 25°C
CIN	Input Capacitance	5.0	pF	$V_{CC} = 5.0V$
C _{OUT} (Note 16)	Output Capacitance	9.0	pF	$V_{CC} = 5.0V$


Note 16: C_{OUT} is measured at frequency f = 1 MHz; per MIL STD-883, Method 3012.

74ABT16244

74ABT16244

