
INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC06 December 1990

74HC/HCT368

FEATURES

- Inverting outputs
- Output capability: bus driver
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT368 are hex inverting buffer/line drivers with 3-state outputs. The 3-state outputs $(n\overline{Y})$ are controlled by the output enable inputs $(1\overline{OE}, 2\overline{OE})$.

A HIGH on $n\overline{\text{OE}}$ causes the outputs to assume a high impedance OFF-state.

A___

The "368" is identical to the "367" but has inverting outputs.

The 74HC/HCT368 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25 \text{ °C}$; $t_r = t_f = 6 \text{ ns}$

SYMBOL	PARAMETER	CONDITIONS	TYP	ICAL	UNIT
STWBOL	PARAMETER	CONDITIONS	НС	нст	
t _{PHL} / t _{PLH}	propagation delay nA to nY	C _L = 15 pF; V _{CC} = 5 V	9	11	ns
CI	input capacitance	CO	3.5	3.5	pF
C _{PD}	power dissipation capacitance per buffer	notes 1 and 2	30	30	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μ W):

 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$ where:

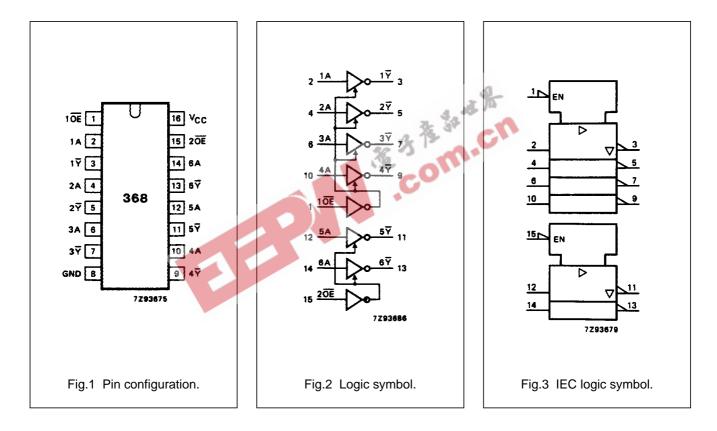
 f_i = input frequency in MHz

 $f_0 =$ output frequency in MHz

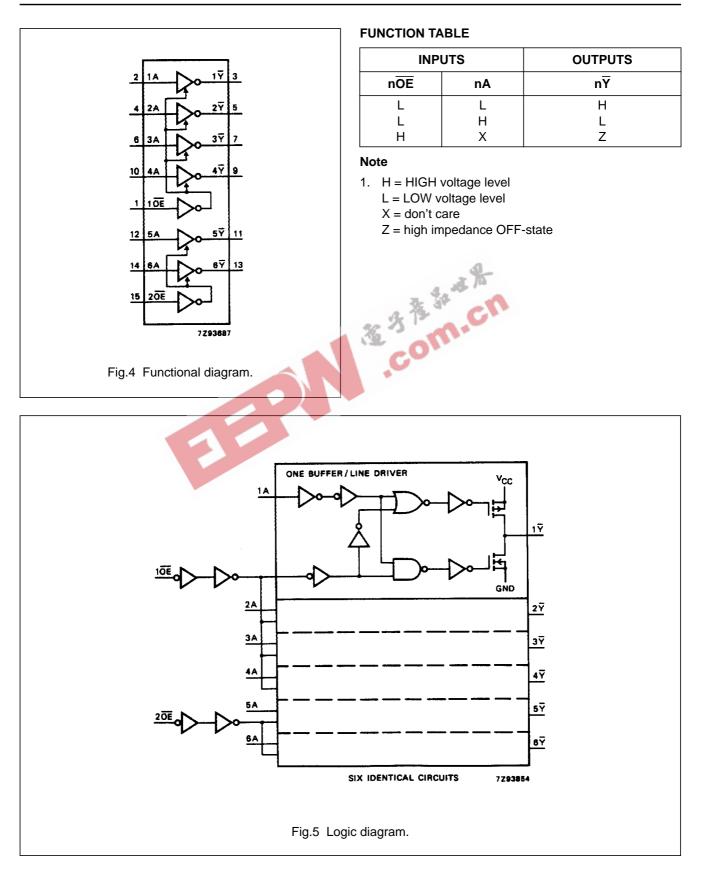
 $\sum (C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs}$

 C_L = output load capacitance in pF

- V_{CC} = supply voltage in V
- 2. For HC the condition is $V_I = GND$ to V_{CC} For HCT the condition is $V_I = GND$ to V_{CC} –1.5 V


ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".


74HC/HCT368

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION	
1, 15	10E, 20E	output enable inputs (active LOW)	
2, 4, 6, 10, 12, 14	1A to 6A	data inputs	
3, 5, 7, 9, 11, 13	$1\overline{Y}$ to $6\overline{Y}$	data outputs	
8	GND	ground (0 V)	
16	V _{CC}	positive supply voltage	

74HC/HCT368

74HC/HCT368

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: bus driver I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

SYMBOL		T _{amb} (°C)								TEST CONDITIONS	
	PARAMETER	74HC									
		+25			-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.		(-)	
t _{PHL} / t _{PLH}	propagation delay nA to nY		30 11 9	95 19 16		120 24 20	1. 40 M	145 29 25	ns	2.0 4.5 6.0	Fig.6
t _{PZH} / t _{PZL}	3-state output enable time nOE to nY		41 15 12	150 30 26	32	190 38 33	n-	225 45 38	ns	2.0 4.5 6.0	Fig.7
t _{PHZ} / t _{PLZ}	3-state output disable time $n\overline{OE}$ to $n\overline{Y}$		55 20 16	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig.7
t _{THL} / t _{TLH}	output transition time		14 5 4	60 12 10		75 15 13		90 18 15	ns	2.0 4.5 6.0	Fig.6

74HC/HCT368

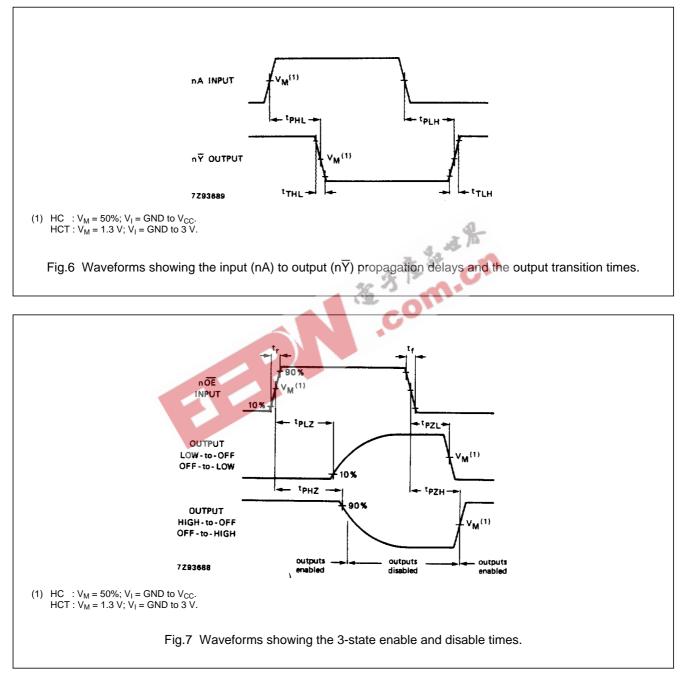
DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: bus driver I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.


INPUT	UNIT LOAD COEFFICIENT
1 0E	1.00
2 0E	0.90
nA	1.00

AC CHARACTERISTICS FOR 74HCT

10E	1.00										
2 0E	0.90							.0			
nA	1.00						. A	105			
						36		-			
AC CHARA	ACTERISTICS FOR 74HCT					2 12		C.			
GND = 0 V;	$t_r = t_f = 6 \text{ ns}; C_L = 50 \text{ pF}$				32		w.				
										TEST CONDITIONS	
SYMBOL	PARAMETER	74HCT									
		+25			-40 to +85 -4		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.		(-)	
t _{PHL} / t _{PLH}	propagation delay nA to nY		13	24		30		36	ns	4.5	Fig.6
t _{PZH} / t _{PZL}	3-state output enable time $n\overline{OE}$ to $n\overline{Y}$		17	35		44		53	ns	4.5	Fig.7
t _{PHZ} / t _{PLZ}	3-state output disable time $n\overline{OE}$ to $n\overline{Y}$		20	35		44		53	ns	4.5	Fig.7
t _{THL} / t _{TLH}	output transition time		5	12		15		18	ns	4.5	Fig.6

74HC/HCT368

AC WAVEFORMS

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".