INTEGRATED CIRCUITS

DATA SHEET

74F779

8-bit bidirectional binary counter (3-State)

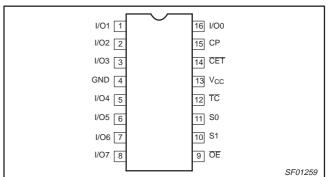
Product specification

1989 Sep 20

IC15 Data Handbook

8-bit bidirectional binary counter (3-State)

74F779


FEATURES

- Multiplexed 3-State I/O ports for bus oriented applications
- Built-in look-ahead carry capability
- Center power pins to reduce effects of package inductance
- Count frequency 145MHz typical
- Supply current 90mA typical
- See 74F269 for 24-pin separate I/O port version
- See 74F579 for 20-pin version
- See 74F1779 for extended function version of the 74F799

DESCRIPTION

The 74F779 is a fully synchronous 8-stage Up/Down Counter with multiplexed 3-State I/O ports for bus-oriented applications. All control functions (hold, count up, count down, synchronous load) are controlled by two mode pine (S0, S1). The device also features carry look-ahead for easy cascading. All state changes are initiated by the rising edge of the clock. When $\overline{\text{CET}}$ is High the data outputs are held in their current state and $\overline{\text{TC}}$ is held High. The $\overline{\text{TC}}$ output is not recommended for use as a clock or asynchronous reset due to the possibility of decoding spikes.

PIN CONFIGURATION

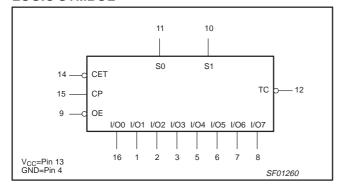
TYPE	TYPICAL f _{MAX}	TYPICAL SUPPLY CURRENT (TOTAL)
74F779	145MHz	90mA

ORDERING INFORMATION

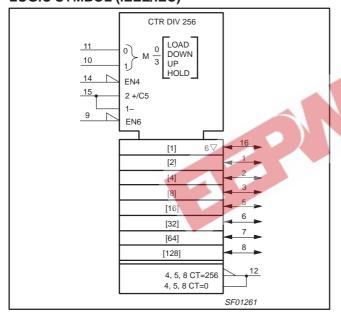
DESCRIPTION		PKG DWG #		
16-Pin Plastic DIP	N74F779N	SOT38-4		
16-Pin Plastic SOL	N74F779D	SOT 162-1		

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
I/On	Data inputs	3.5/1.0	70μA/0.6mA
1/011	Data outputs	150/40	3.0mA/24mA
S0, S1	Select inputs	1.0/1.0	20μA/0.6mA
ŌĒ	Output Enable input (active Low)	1.0/1.0	20μA/0.6mA
CET	Count Enable Trickle input (active Low)	1.0/1.0	20μA/0.6mA
СР	Clock input (active rising edge)	1.0/1.0	20μA/0.6mA
TC	Terminal Count output (active Low)	50/33	1.0mA/20mA


NOTE:

One (1.0) FAST Unit Load is defined as: $20\mu A$ in the High state and 0.6mA in the Low state.


8-bit bidirectional binary counter (3-State)

74F779

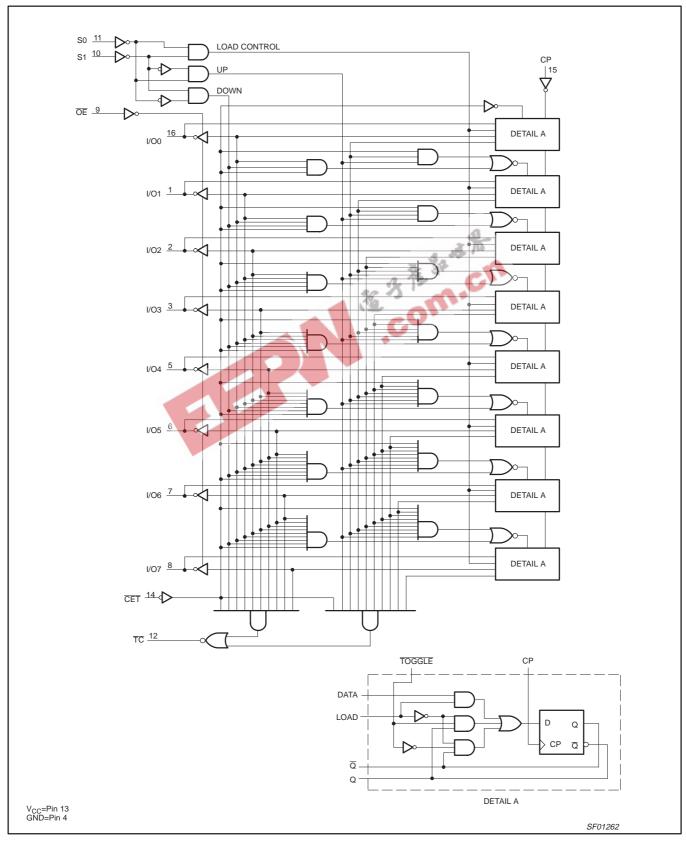
LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

FUNCTION TABLE

		INPUTS	3		OPERATING MODE
S1	S0	CET	ΟE	СР	
Х	Х	Х	Н	Χ	I/O0 to I/O7 in High impedance
Х	X X X L X		Х	Flip-flop outputs appear on I/O lines	
L	L	Х	Н	1	Parallel load all flip-flops
(not	LL)	Н	Х	1	Hold (TC held High)
Н	L	L	Χ	1	Count up
L	Н	L	Χ	1	Count down

H = High voltage level L = Low voltage level


L = Low voltage level
X = Don't care
↑ = Low-to-High clock transition
(not LL) = S0 and S1 should never be Low voltage level at the same time in the hold mode only.

1989 Sep 20 3

8-bit bidirectional binary counter (3-State)

74F779

LOGIC DIAGRAM

8-bit bidirectional binary counter (3-State)

74F779

ABSOLUTE MAXIMUM RATINGS

(Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER		RATING	UNIT
V _{CC}	Supply voltage		-0.5 to +7.0	V
V _{IN}	Input voltage		-0.5 to +7.0	V
I _{IN}	Input current	-30 to +5	mA	
V _{OUT}	Voltage applied to output in High output state	–0.5 to V _{CC}	V	
	Comment and like the substitute I am automate the	TC	40	mA
lout	Current applied to output in Low output state	I/On	48	mA
T _{amb}	Operating free-air temperature range	•	0 to +70	°C
T _{stg}	Storage temperature	-65 to +150	°C	

- 8-

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	25-	LIMITS				
STWIBUL	PARAMETER		43	MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage		3	4.5	5.0	5.5	V
V _{IH}	High-level input voltage		CO	2.0			V
V _{IL}	Low-level input voltage					0.8	V
I _{IK}	Input clamp current)				-18	mA
	High level output gurrent	TC				-1	mA
ЮН	High-level output current	I/On				-3	mA
	I am land a day a survey	TC				20	mA
l _{OL}	Low-level output current	I/On				24	mA
T _{amb}	Operating free-air temperature range	-		0		70	°C

8-bit bidirectional binary counter (3-State)

74F779

DC ELECTRICAL CHARACTERISTICS

(Over recommended operating free-air temperature range unless otherwise noted.)

						LIMITS			
SYMBOL	PARAMETER		TEST	TEST CONDITIONS ^{NO TAG}				MAX	UNIT
		тс	V _{CC} = MIN, V _{IL} = MAX	4	±10%V _{CC}	2.5			V
V			V _{IL} = MIN	$I_{OH} = -1 \text{mA}$	±5%V _{CC}	2.7	3.4		V
V _{OH}	High-level output voltage	1/0-	$V_{CC} = MIN,$ $V_{IL} = MAX$)	±10%V _{CC}	2.4			V
		I/On	V _{IH} = MIN	$I_{OH} = -3mA$	±5%V _{CC}	2.7	3.3		V
.,	Column Low-level output voltage		$V_{CC} = MIN,$	I MAN	±10%V _{CC}		0.30	0.50	V
VOL			$V_{IL} = MAX$ $V_{IH} = MIN$	$I_{OL} = MAX$	±5%V _{CC}		0.35	0.50	V
V _{IK}	Input clamp voltage		V _{CC} = MIN, I _I	$V_{CC} = MIN, I_I = I_{IK}$			-0.73	-1.2	V
l.	Input current at maximum	I/On	$V_{CC} = 5.5V, V_I = 5.5V$ $V_{CC} = 5.5V, V_I = 7.0V$					1	mA
łı	input voltage	others	V _{CC} = 5.5V, \			100	μΑ		
I _{IH}	High-level input current	except	$V_{CC} = MAX,$	V _I = 2.7V	14	3/1		20	μΑ
I _{IL}	Low-level input current	I/On	$V_{CC} = MAX,$	$V_{I} = 0.5V$	1000			-0.6	mA
I _{IH} +I _{OZH}	Off-state output current High-level voltage applied	I/On	V _{CC} = MAX,	V _O = 2.7V	20.			70	μΑ
I _{IL} +I _{OZL}	Off-state output current Low-level voltage applied	I/On	V _{CC} = MAX,	$V_{CC} = MAX, V_O = 0.5V$				-600	μΑ
I _{OS}	Short-circuit output current ^N	O TAG	$V_{CC} = MAX$	V _{CC} = MAX				-150	mA
		Іссн					82	116	mA
I _{CC}	Supply current (total)	ICCL	V _{CC} = MAX				91	128	mA
		¹ ccz]				97	136	mA

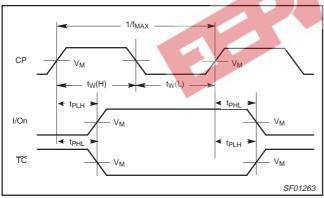
1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.

AC ELECTRICAL CHARACTERISTICS

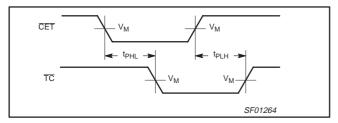
					LIMIT	'S		
SYMBOL	PARAMETER	TEST CONDITIONS	l '	_{lmb} = +25° V _{CC} = +5V 50pF, R _L =	/	T _{amb} = 0°0 V _{CC} = +5 C _L = 50pF,	UNIT	
			MIN	TYP	MAX	MIN	MAX	
f _{MAX}	Maximum clock frequency	Waveform 1	125	145		115		MHz
t _{PLH}	Propagation delay	Waveform 1	4.5	7.0	10.5	4.5	11.0	ns
t _{PHL}	CP to I/On		5.5	8.0	10.5	5.5	11.0	ns
t _{PLH}	Propagation delay	Waveform 1	4.5	7.0	9.0	4.5	10.0	ns
t _{PHL}	CP to TC		4.5	7.0	9.0	4.5	10.0	ns
t _{PLH}	Propagation delay	Waveform 2	3.0	4.5	6.5	2.5	7.5	ns
t _{PHL}	CET to TC		3.0	5.5	7.5	2.5	8.0	ns
t _{PZH}	Output Enable time to	Waveform 4	2.5	4.5	7.0	2.5	8.0	ns
t _{PZL}	High or Low level	Waveform 5	4.5	6.5	9.0	4.5	9.5	ns
t _{PHZ}	Output Enable time from	Waveform 4	1.0	3.0	6.5	1.0	8.0	ns
t _{PLZ}	High or Low level	Waveform 5	1.0	4.0	7.0	1.0	8.0	ns

6 1989 Sep 20

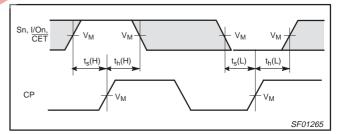
All typical values are at V_{CC} = 5V, T_{amb} = 25°C.
 Not more than one output should be shorted at a time. For testing I_{OS}, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, I_{OS} tests should be performed last.

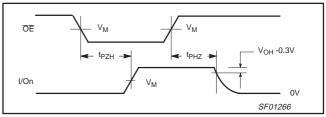

AC SETUP REQUIREMENTS

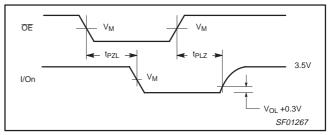
				LIMITS						
SYMBOL	PARAMETER	TEST CONDITIONS	T ₂	_{lmb} = +25° V _{CC} = +5V 50pF, R _L =	C , 500Ω	T _{amb} = 0°0 V _{CC} = +5 C _L = 50pF,	UNIT			
			MIN	TYP	MAX	MIN	MAX			
$t_{s}(H)$ $t_{s}(L)$	Setup time, High or Low I/O _n to CP	Waveform 3	5.0 5.0			5.0 5.0		ns ns		
t _h (H) t _h (L)	Hold time, High or Low I/O _n to CP	Waveform 3	1.0 1.0			1.0 1.0		ns ns		
$t_{s}(H)$ $t_{s}(L)$	Setup time, High or Low CET to CP	Waveform 3	5.0 5.5			5.0 6.0		ns ns		
t _h (H) t _h (L)	Hold time, High or Low CET to CP	Waveform 3	0 0			0		ns ns		
t _S (H) t _S (L)	Setup time, High or Low Sn to CP	Waveform 3	8.0 8.0		4	8.5 8.5		ns ns		
t _h (H) t _h (L)	Hold time, High or Low Sn to CP	Waveform 3	0 0	- 4a	通用	0 0		ns ns		
t _w (H) t _w (L)	CP Pulse width, High or Low	Waveform 1	4.0 4.0	13	C	4.0 4.0		ns ns		


AC WAVEFORMS

For all waveforms, $V_M = 1.5V$.

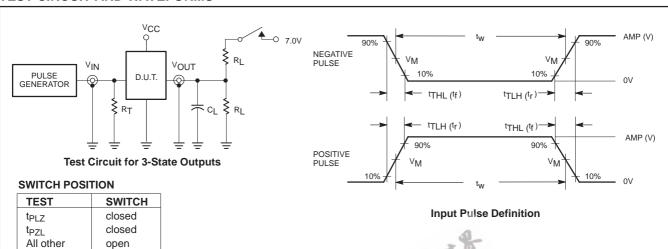

The shaded areas indicate when the input is permitted to change for predictable output performance.


Waveform 1. Propagation Delay, Clock Input to Output, Clock Pulse Width, and Maximum Clock Frequency


Waveform 2. Propagation Delay $\overline{\text{CET}}$ Input to Terminal Count Output

Waveform 3. Data Setup and Hold Times

Waveform 4. 3-State Output Enable Time to High Level and Output Disable Time from High Level



Waveform 5. 3-State Output Enable Time to Low Level and Output Disable Time from Low Level

8-bit bidirectional binary counter (3-State)

74F779

TEST CIRCUIT AND WAVEFORMS

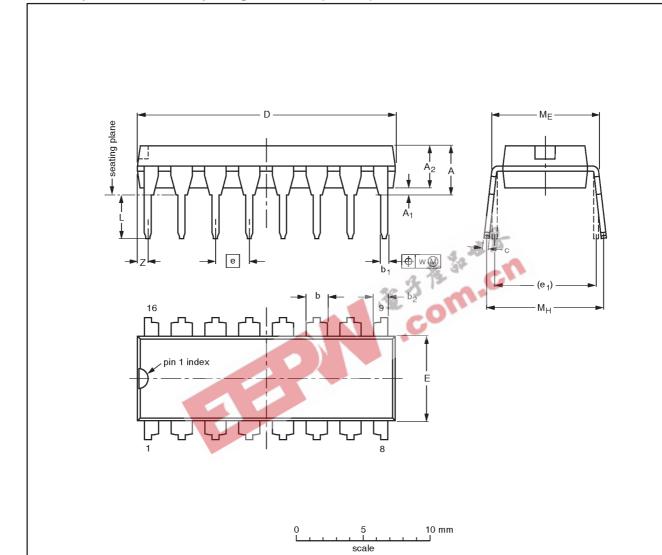
DEFINITIONS:

R_L = Load resistor;

see AC electrical characteristics for value.
Load capacitance includes jig and probe capacitance; see AC electrical characteristics for value.

Termination resistance should be equal to Z_{OUT} of pulse generators.

-	30	INP	INPUT PULSE REQUIREMENTS									
	amily	amplitude	VM	rep. rate	t _w	t _{TLH}	t _{THL}					
l	7 4F	3.0V	1.5V	1MHz	500ns	2.5ns	2.5ns					


1989 Sep 20 8

8-bit bidirectional binary counter (3-State)

74F779

DIP16: plastic dual in-line package; 16 leads (300 mil)

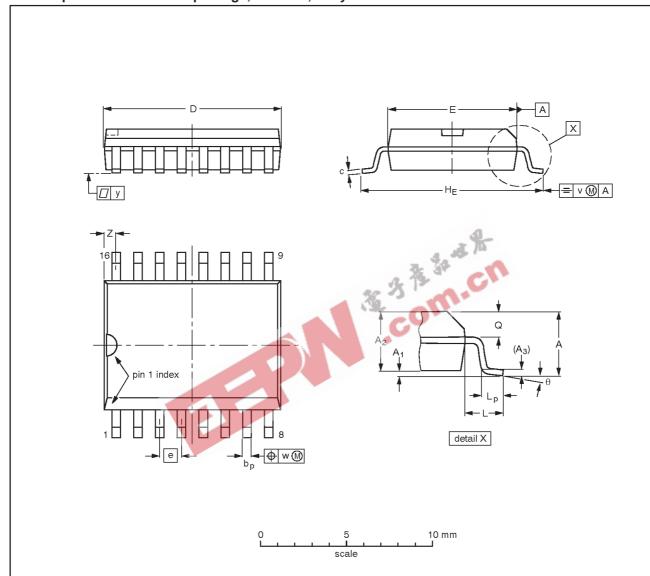
SOT38-4

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	b ₂	С	D ⁽¹⁾	E ⁽¹⁾	е	e ₁	L	ME	M _H	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.30	0.53 0.38	1.25 0.85	0.36 0.23	19.50 18.55	6.48 6.20	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	0.76
inches	0.17	0.020	0.13	0.068 0.051	0.021 0.015	0.049 0.033	0.014 0.009	0.77 0.73	0.26 0.24	0.10	0.30	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.030

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.


OUTLINE VERSION		REFER	EUROPEAN	ISSUE DATE		
	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT38-4						92-11-17 95-01-14

8-bit bidirectional binary counter (3-State)

74F779

SO16: plastic small outline package; 16 leads; body width 7.5 mm

SOT162-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	z ⁽¹⁾	θ
mm	2.65	0.30 0.10	2.45 2.25	0.25	0.49 0.36	0.32 0.23	10.5 10.1	7.6 7.4	1.27	10.65 10.00	1.4	1.1 0.4	1.1 1.0	0.25	0.25	0.1	0.9 0.4	8°
inches	0.10	0.012 0.004	0.096 0.089	0.01	0.019 0.014	0.013 0.009	0.41 0.40	0.30 0.29	0.050	0.419 0.394	0.055	0.043 0.016	0.043 0.039	0.01	0.01	0.004	0.035 0.016	0°

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE	
SOT162-1	075E03	MS-013AA				95 01 24 97-05-22	

8-bit bidirectional binary counter (3-State)

74F779

NOTES

8-bit bidirectional binary counter (3-State)

74F779

Data sheet status

Data sheet status	Product status	Definition [1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make chages at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

^[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

print code Date of release: 10-98

Document order number: 9397-750-05179

Let's make things better.

