SN54ABT16823, SN74ABT16823 **18-BIT BUS-INTERFACE FLIP-FLOPS** WITH 3-STATE OUTPUTS

SN54ABT16823 . . . WD PACKAGE

SN74ABT16823 . . . DGG OR DL PACKAGE

(TOP VIEW)

1CLR 1 10E 2

1Q1 🛛 3

GND 4

1Q2 🛛 5

1Q3 🛛 6

1Q4 🛛 8

1Q5 9

1Q6 110

GND 11

1Q7 12

1Q8 13

V_{CC} 22 2Q7 **2**3

2Q8 224

GND 25

2Q9 26

20E 27

2CLR 28

- L 1 1Q9 L 14 2Q1 L 15 2Q2 L 16 2Q3 L 17 GND

SCBS217C - JUNE 1992 - REVISED JANUARY 1997

56] 1CLK

54 1D1

53 GND

52 0 1D2

51 1D3

50 VCC

49 🛛 1D4

48 1D5

47 11D6

46 GND

45 1D7

44 🛛 1D8

43 1D9

42 2D1 41 1 2D2

40 **1** 2D3

39 🛛 GND

38 2D4

37 **1** 2D5 36 2D6

35 VCC

34 2D7

33 2D8

32 GND

31 1 2D9

29 20 20 LK

30 2CLKEN

55 1 1CLKEN

- **Members of the Texas Instruments** Widebus[™] Family
- State-of-the-Art EPIC-IIB™ BiCMOS Design **Significantly Reduces Power Dissipation**
- High-Impedance State During Power Up and Power Down
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Typical V_{OLP} (Output Ground Bounce) < 1 V at V_{CC} = 5 V, T_A = 25° C
- Distributed V_{CC} and GND Pin Configuration **Minimizes High-Speed Switching Noise**
- **Flow-Through Architecture Optimizes PCB** Layout
- High-Drive Outputs (-32-mA IOH, 64-mA IOL)
- Package Options Include Plastic 300-mil Shrink Small-Outline (DL), Thin Shrink Small-Outline (DGG) Packages and 380-mil Fine-Pitch Ceramic Flat (WD) Package Using 25-mil Center-to-Center Spacings

description

These 18-bit flip-flops feature 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing wider buffer registers, I/O ports, bidirectional bus drivers with parity, and working registers.

The 'ABT16823 can be used as two 9-bit flip-flops or one 18-bit flip-flop. With the clock-enable (CLKEN) input low, the D-type flip-flops enter data on the low-to-high transitions of the clock. Taking CLKEN high disables the clock buffer, latching the outputs. Taking the clear (CLR) input low causes the Q outputs to go low independently of the clock.

A buffered output-enable (\overline{OE}) input can be used to place the nine outputs in either a normal logic state (high or low logic level) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without need for interface or pullup components.

OE does not affect the internal operation of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

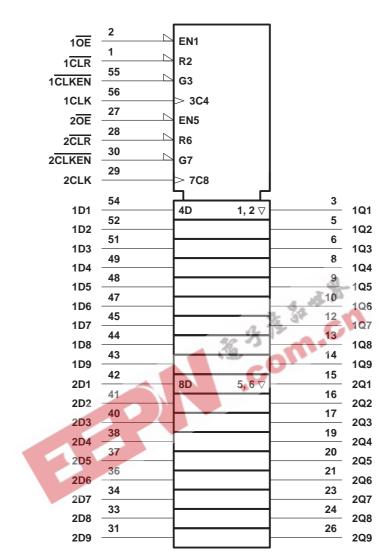
Widebus and EPIC-IIB are trademarks of Texas Instruments Incorporated.

PRODUCTION DATA information is current as of publication date Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1997. Texas Instruments Incorporated

description (continued)

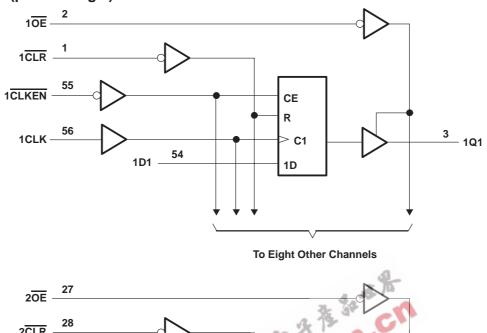
When V_{CC} is between 0 and 2.1 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 2.1 V, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking/current-sourcing capability of the driver.

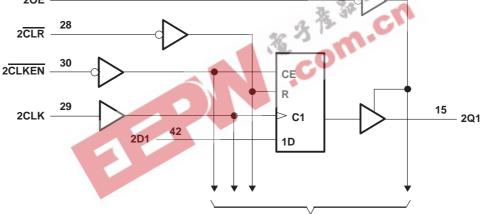

The SN54ABT16823 is characterized for operation over the full military temperature range of -55° C to 125° C. The SN74ABT16823 is characterized for operation from -40° C to 85° C.

	FUNCTION TABLE (each 9-bit flip-flop)									
			INPUTS			OUTPUT				
	OE	CLR	CLKEN	CLK	D	Q				
	L	L	Х	Х	Х	L				
	L	Н	L	\uparrow	Н	Н				
	L	Н	L	\uparrow	L	L				
	L	Н	L	L	Х	Q ₀				
	L	Н	Н	Х	х	Q ₀				
	н	Х	Х	Х	Х	Z	-			
F					5	om.	c.			

SN54ABT16823, SN74ABT16823 18-BIT BUS-INTERFACE FLIP-FLOPS WITH 3-STATE OUTPUTS

SCBS217C - JUNE 1992 - REVISED JANUARY 1997


[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.


logic symbol[†]

SN54ABT16823, SN74ABT16823 18-BIT BUS-INTERFACE FLIP-FLOPS WITH 3-STATE OUTPUTS SCBS217C - JUNE 1992 - REVISED JANUARY 1997

logic diagram (positive logic)

To Eight Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} Input voltage range, V _I (see Note 1) Voltage range applied to any output in the high or power-off state, V _O	\ldots –0.5 V to 7 V
Current into any output in the low state, I _O : SN54ABT16823	96 mA
SN74ABT16823	
Input clamp current, I _{IK} (V _I < 0)	–18 mA
Output clamp current, I_{OK} ($V_O < 0$)	
Package thermal impedance, θ_{JA} (see Note 2): DGG package	
DL package	
Storage temperature range, T _{stg}	

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

£....

2. The package thermal impedance is calculated in accordance with EIA/JEDEC Std JESD51.

recommended operating conditions (see Note 3)

		3.15	SN54AB	Г16823	SN74AB1	Г16823	UNIT
		1 St. 34	MIN	MAX	MIN	MAX	UNIT
Vcc	Supply voltage	20 X	4.5	5.5	4.5	5.5	V
VIH	High-level input voltage	132	2		2		V
VIL	Low-level input voltage	6		0.8		0.8	V
VI	Input voltage		0	VCC	0	VCC	V
ЮН	High-level output current			-24		-32	mA
IOL	Low-level output current			48		64	mA
$\Delta t/\Delta v$	Input transition rise or fall rate	Outputs enabled		10		10	ns/V
Δt/ΔVCC	Power-up ramp rate		200		200		μs/V
ТА	Operating free-air temperature		-55	125	-40	85	°C

NOTE 3: Unused inputs must be held high or low to prevent them from floating.

SN54ABT16823, SN74ABT16823 18-BIT BUS-INTERFACE FLIP-FLOPS WITH 3-STATE OUTPUTS SCBS217C - JUNE 1992 - REVISED JANUARY 1997

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	ADAMETED	TEAT O		Т	A = 25°C	;	SN54AB	Г16823	SN74AB1	Г16823	UNIT
P	ARAMETER	TESTC	ONDITIONS	MIN	түр†	MAX	MIN	MAX	MIN	MAX	UNIT
VIK		V _{CC} = 4.5 V,	I _I = -18 mA			-1.2		-1.2		-1.2	V
		$V_{CC} = 4.5 V,$	I _{OH} = -3 mA	2.5			2.5		2.5		
Vон		V _{CC} = 5 V,	I _{OH} = -3 mA	3			3		3		V
vОн		V _{CC} = 4.5 V	I _{OH} = -24 mA	2			2				v
		VCC = 4.5 V	I _{OH} = -32 mA	2*					2		
VOL		V _{CC} = 4.5 V	I _{OL} = 48 mA			0.55		0.55			V
		·(() = ·	I _{OL} = 64 mA			0.55*				0.55	•
V _{hys}					100						mV
lj –		$V_{CC} = 0$ to 5.5 $V_{I} = V_{CC}$ or GN				±1		±1		±1	μΑ
IOZPU		$V_{CC} = 0 \text{ to } 2.1$ $V_{O} = 0.5 \text{ V to } 2$				±50		±50		±50	μΑ
IOZPD		$V_{CC} = 2.1 \text{ V to}$ $V_{O} = 0.5 \text{ V to } 2$				±50	A R	±50		±50	μA
IOZH		$V_{CC} = 2.1 \text{ V}$ to $V_{O} = 2.7 \text{ V}$, OE			3	10**	C	50		10	μΑ
IOZL		$V_{CC} = 2.1 \text{ V}$ to $V_{O} = 0.5 \text{ V}$, OE			X.	-10**	Q	-50		-10	μΑ
loff		$V_{CC} = 0,$	$V_{I} \text{ or } V_{O} \leq 4.5 \text{ V}$			±100				±100	μΑ
ICEX	Outputs high	$V_{CC} = 5.5 V,$	V _O = 5.5 V			50		50		50	μΑ
lo‡		V _{CC} = 5.5 V,	V _O = 2.5 V	-50	-100	-200	-50	-200	-50	-200	mA
	Outputs high					0.5		0.5		0.5	
ICC	Outputs low	V _{CC} = 5.5 V, I _C V _I = V _{CC} or GN				80		80		80	mA
	Outputs disabled					0.5		0.5		0.5	
∆I _{CC} §		$V_{CC} = 5.5 V, O$ Other inputs at	ne input at 3.4 V, V _{CC} or GND			1.5		1.5		1.5	mA
Ci		V _I = 2.5 V or 0.	5 V		3.5						pF
Co		$V_{O} = 2.5 V \text{ or } 0$).5 V		7.5						pF

* On products compliant to MIL-PRF-38535, this parameter does not apply.

** These limits apply only to the SN74ABT16823.

[†] All typical values are at $V_{CC} = 5 V$.

[‡]Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

\$ This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

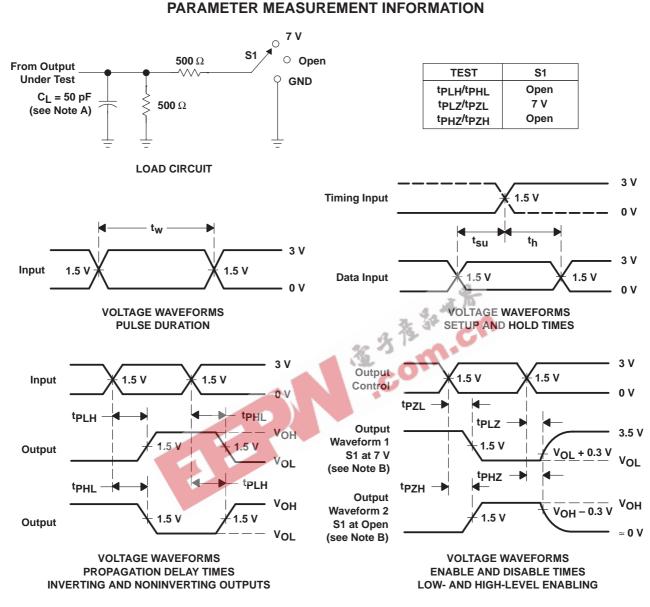
SN54ABT16823, SN74ABT16823 18-BIT BUS-INTERFACE FLIP-FLOPS WITH 3-STATE OUTPUTS SCBS217C - JUNE 1992 - REVISED JANUARY 1997

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

				V _{CC} = 5 V, T _A = 25°C		SN54ABT16823		SN74ABT16823		
			MIN	MAX	MIN	MAX	MIN	MAX		
fclock	Clock frequency		0	150	0	150	0	150	MHz	
tw Pulse duration		CLR low	3.3		3.3		3.3		ns	
t _w		CLK high or low	3.3		3.3		3.3		115	
		CLR inactive	1.6		2		1.6			
t _{su}	Setup time before $CLK\uparrow$	Data	1.7		1.7		1.7		ns	
		CLKEN low	2.8		2.8	2.8 2.8			1	
+.	Hold time after CLK↑	Data	1.2		1.2		1.2			
th		CLKEN low	0.6		0.6		0.6		ns	

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)

			SN54ABT16823				23	
FROM (INPUT)		TO (OUTPUT)	VC TA	c = 5 V = 25°C	,	MIN	MAX	UNIT
		10 X -	MIN	TYP	MAX			
		(3) (1)	150			150		MHz
CLK			1.6	3.9	5.5	1.6	7.7	ns
OLK		2.1	3.9	5.4	2.1	6.4		
CLR		Q	1.9	4.1	5.3	1.9	6.3	ns
		0	1	3.1	4.2	1	5.1	
ÛE	Q		1.5	3.5	4.6	1.5	5.7	ns
		0	2.2	4.3	6	2.2	6.8	
UE	Q .		1.6	4.3	6.4	1.6	9.9	ns
	(INPUT) CLK	(INPUT) CLK CLR OE	(INPUT) (OUTPUT) CLK Q CLR Q OE Q	(INPUT) (OUTPUT) (OUTPUT) TA MIN 150 150 2.1 2.1 0E Q 1.9 1.5 2.1 1.5 2.1 1.5 2.1 1.5 2.1 0E Q 1.5 2.1 1.5 2.2 1.5 1.5 2.1 1.5 2.2 1.5 1.5 1.5 2.2	(INPUT) (OUTPUT) $T_{A} = 25^{\circ}C$ $MIN TYP$ 150 $CLK Q 11.6 3.9$ 2.1 3.9 $CLR Q 1.9 4.1$ $OE Q 1.9 4.1$ 1.5 3.5 $OE Q 2.2 4.3$	(INPUT) (OUTPUT) $T_{A} = 25^{\circ}C$ $\hline MIN TYP MAX$ 150 $CLK Q 16 3.9 5.5$ 2.1 3.9 5.4 $\hline CLR Q 1.9 4.1 5.3$ $\hline OE Q 1.5 3.5 4.6$ $\hline Q 2.2 4.3 6$	(INPUT) (OUTPUT) (O	(INPUT) (OUTPUT) (O


switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V (Т,	CC = 5 V A = 25°C	l, ;	MIN	МАХ	UNIT
			MIN	TYP	MAX			
fmax			150			150		MHz
^t PLH	CLK	Q	1.6	3.9	5.5	1.6	6.8	ns
t _{PHL}	OER	×	2.1	3.9	5.4	2.1	6	
^t PHL	CLR	Q	1.9	4.1	5.3	1.9	6.1	ns
^t PZH	OE	Q	1	3.1	4.2	1	4.9	
tPZL	ÛE	Q	1.5	3.5	4.6	1.5	5.5	ns
^t PHZ	OE	Q	2.2	4.3	5.6	2.2	6.1	ns
tPLZ		Q	1.6	4.3	6.4	1.6	8.7	

SN54ABT16823, SN74ABT16823 18-BIT BUS-INTERFACE FLIP-FLOPS WITH 3-STATE OUTPUTS

SCBS217C – JUNE 1992 – REVISED JANUARY 1997

NOTES: A. CL includes probe and jig capacitance.

B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.

C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2.5 ns, t_f \leq 2.5 ns.

D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

9-Oct-2007

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
5962-9584201QXA	ACTIVE	CFP	WD	56	1	TBD	A42 SNPB	N / A for Pkg Type
74ABT16823DGGRE4	ACTIVE	TSSOP	DGG	56	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
74ABT16823DGGRG4	ACTIVE	TSSOP	DGG	56	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74ABT16823DGGR	ACTIVE	TSSOP	DGG	56	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74ABT16823DGVR	ACTIVE	TVSOP	DGV	56	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74ABT16823DGVRE4	ACTIVE	TVSOP	DGV	56	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74ABT16823DGVRG4	ACTIVE	TVSOP	DGV	56	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74ABT16823DL	ACTIVE	SSOP	DL	56	20	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74ABT16823DLG4	ACTIVE	SSOP	DL	56	20	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74ABT16823DLR	ACTIVE	SSOP	DL	56	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74ABT16823DLRG4	ACTIVE	SSOP	DL	56	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SNJ54ABT16823WD	ACTIVE	CFP	WD	56	1	TBD	A42 SNPB	N / A for Pkg Type

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. **TBD:** The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

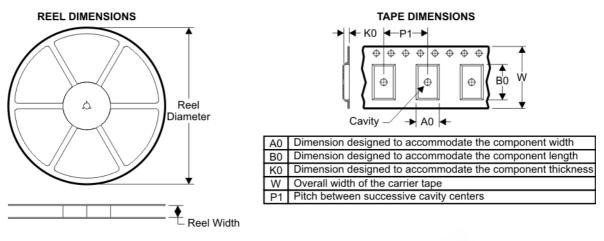
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

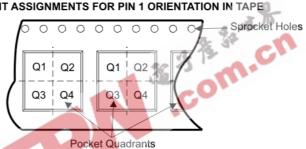
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI

PACKAGE OPTION ADDENDUM

9-Oct-2007

to Customer on an annual basis.

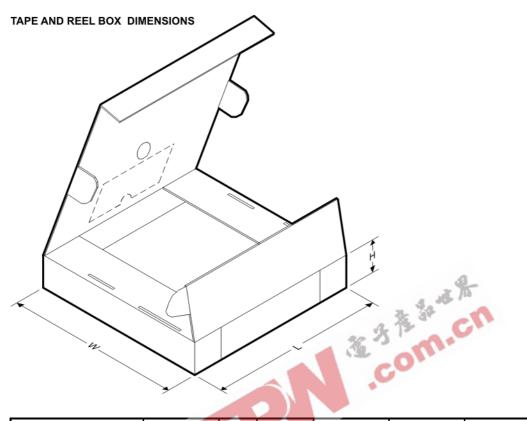



PACKAGE MATERIALS INFORMATION

4-Oct-2007

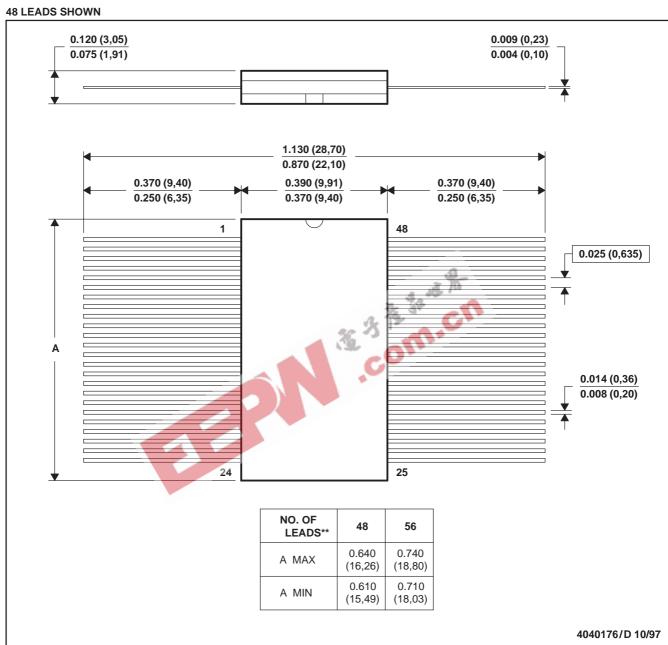
TAPE AND REEL BOX INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPES



Device	Package	Pins	Site	Reel Diameter (mm)	Reel Width (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74ABT16823DGGR	DGG	56	SITE 41	330	24	8.6	15.6	1.8	12	24	Q1
SN74ABT16823DGVR	DGV	56	SITE 41	330	24	6.8	10.1	1.6	12	24	Q1
SN74ABT16823DLR	DL	56	SITE 41	330	32	11.35	18.67	3.1	16	32	Q1

PACKAGE MATERIALS INFORMATION

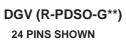

4-Oct-2007

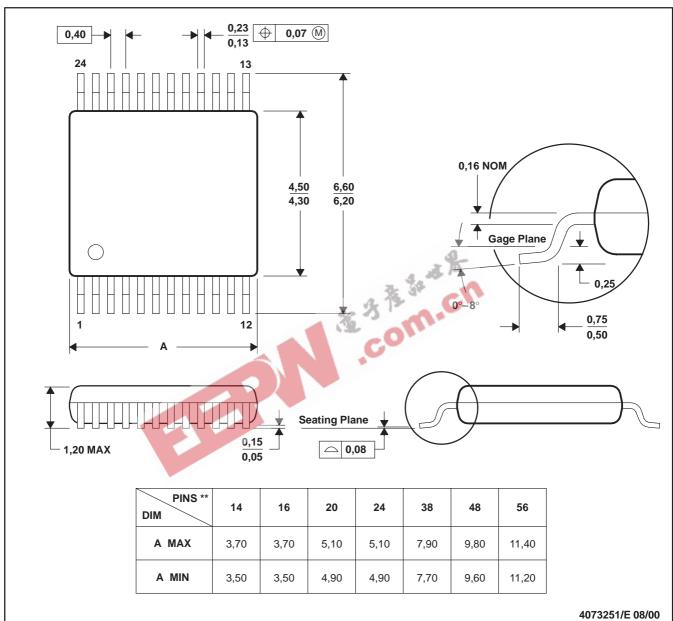
Device	Package	Pins	Site	Length (mm)	Width (mm)	Height (mm)
SN74ABT16823DGGR	DGG	56	SITE 41	346.0	346.0	41.0
SN74ABT16823DGVR	DGV	56	SITE 41	346.0	346.0	41.0
SN74ABT16823DLR	DL	56	SITE 41	346.0	346.0	49.0

MCFP010B - JANUARY 1995 - REVISED NOVEMBER 1997

CERAMIC DUAL FLATPACK

NOTES: A. All linear dimensions are in inches (millimeters).


WD (R-GDFP-F**)


- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only
- E. Falls within MIL STD 1835: GDFP1-F48 and JEDEC MO -146AA GDFP1-F56 and JEDEC MO -146AB

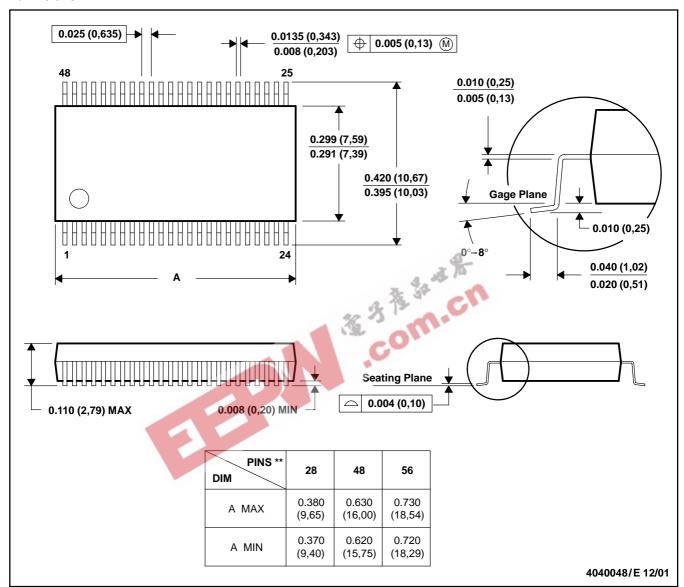
MPDS006C - FEBRUARY 1996 - REVISED AUGUST 2000

PLASTIC SMALL-OUTLINE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.

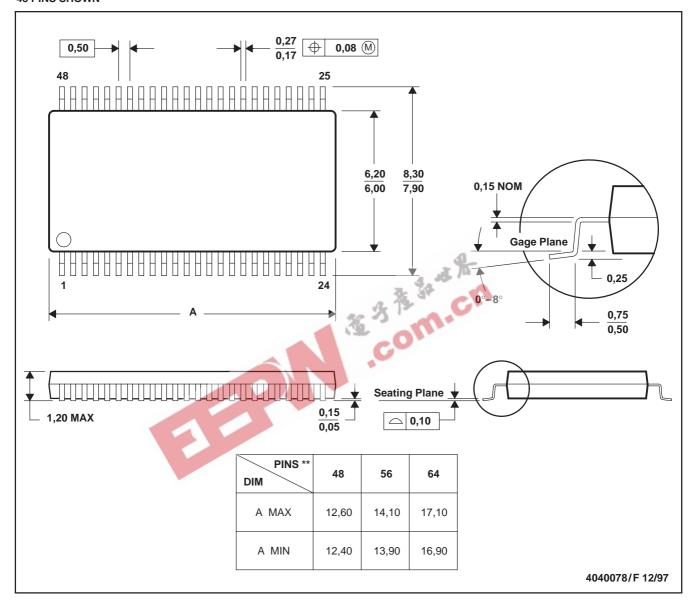

- D. Falls within JEDEC: 24/48 Pins MO-153
 - 14/16/20/56 Pins MO-194

MSSO001C - JANUARY 1995 - REVISED DECEMBER 2001

PLASTIC SMALL-OUTLINE PACKAGE

DL (R-PDSO-G**) 48 PINS SHOWN

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265


NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MO-118

MTSS003D - JANUARY 1995 - REVISED JANUARY 1998

PLASTIC SMALL-OUTLINE PACKAGE

DGG (R-PDSO-G**) 48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Telephony	www.ti.com/telephony
Low Power Wireless	www.ti.com/lpw	Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2007, Texas Instruments Incorporated