

74LCX16245

Low voltage CMOS 16-bit bus transceiver (3-state) with 5V tolerant inputs and outputs

Features

- 5V tolerant inputs and outputs
- High speed:
 - t_{PD} = 4.5ns (Max) at V_{CC} = 3V
- Power down protection on inputs and outputs
- Symmetrical output impedance:
 II_{OH}I = I_{OL} = 24mA (Min) at V_{CC} = 3V
- PCI bus levels guaranteed at 24mA
- Balanced propagation delays:
 - $t_{PLH} \cong t_{PHL}$
- Operating voltage range:
- V_{CC} (Opr) = 2.0V to 3.6V
- Pin and function compatible with 74 series 16245
- Latch-up performance exceeds 500mA (JESD 17)
- ESD performance:
 - HBM > 2000V (MIL STD 883 method 3015); MM > 200V

Description

The 74LCX16245 is a low voltage CMOS 16 bit bus transceiver (3-state) fabricated with submicron silicon gate and double-layer metal wiring C^2 MOS technology. It is ideal for low power and high speed 3.3V applications; it can be interfaced to 5V signal environment for both inputs and outputs.

This IC is intended for two-way asynchronous communication between data buses; the direction of data transmission is determined by DIR input.

The two enable inputs $n\overline{G}$ can be used to disable the device so that the buses are effectively isolated.

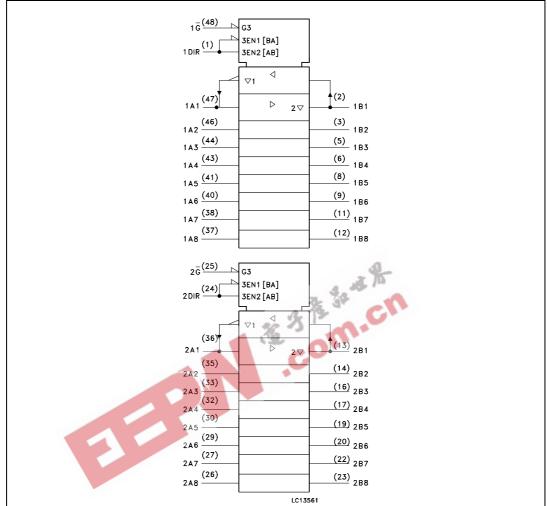
It has same speed performance at 3.3V than 5V AC/ACT family, combined with a lower power consumption.

All inputs and outputs are equipped with protection circuits against static discharge, giving them 2KV ESD immunity and transient excess voltage.

All floating bus terminals during High Z State must be held HIGH or LOW.

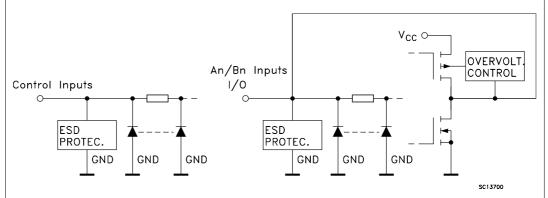
Order codes

Part number	Package	Packaging
74LCX16245TTR	TSSOP48	Tape and reel


February 2007

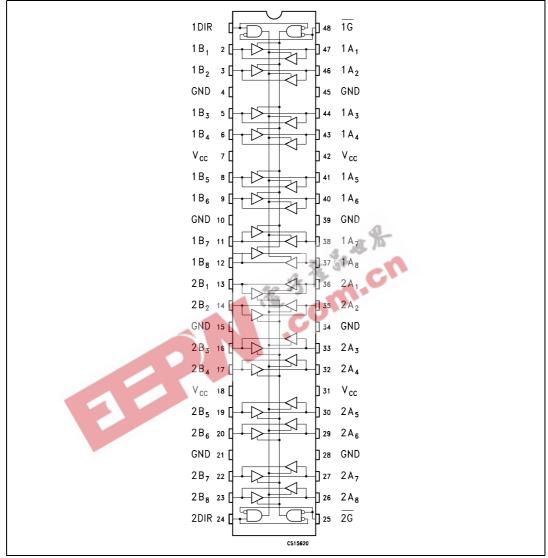
Contents

1	Logic symbols and I/O equivalent circuit
2	Pin settings
	2.1 Pin connection
	2.2 Pin description 5
3	Logic states
	3.1 Truth table
4	Maximum rating
	4.1 Recommended operating conditions 6
5	Electrical characteristics7
6	Electrical characteristics 7 Test circuit 9 Waveforms 10
7	Waveforms
8	Package mechanical data
9	Revision history



1 Logic symbols and I/O equivalent circuit

Figure 1. IEC logic symbols



2 Pin settings

2.1 Pin connection

Figure 3. Pin connection (top through view)

Pin description 2.2

Table 1. Pin description

1DIR 11 to 1B8 11 to 2B8 2DIR 2G	Directional control Data inputs/outputs Data inputs/outputs Directional control
11 to 2B8 2DIR	Data inputs/outputs
2DIR	
	Directional control
2 <u>G</u>	
	Output enable input
1 to 2A8	Data inputs/outputs
1 to 1A8	Data inputs/outputs
1 G	Output enable input
GND	Ground (0V)
V _{CC}	Positive supply voltage
N.S.	com.cu
•	1 to 1A8 1 <u>G</u> GND V _{CC}

Logic states 3

3.1 Truth table

Table 2. Truth table

Inp	uts	Fund	Output	
G	DIR	A BUS	B BUS	Yn
L	L	Output	Input	A = B
L	Н	Input	Output	B = A
Н	Х	Z	Z	Z

Note:

X : Do not care Z : High impedance

4 Maximum rating

Stressing the device above the rating listed in the "absolute maximum ratings" table may cause permanent damage to the device. these are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. exposure to absolute maximum rating conditions for extended periods may affect device reliability. refer also to the STMicroelectronics sure program and other relevant quality documents.

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	-0.5 to +7.0	V
VI	DC input voltage	-0.5 to +7.0	V
Vo	DC output voltage (OFF state)	-0.5 to +7.0	V
Vo	DC output voltage (high or low state) ⁽¹⁾	-0.5 to V _{CC} + 0.5	V
Ι _{ΙΚ}	DC input diode current	-50	mA
I _{OK}	DC output diode current ⁽²⁾	-50	mA
Ι _Ο	DC output current	±50	mA
I _{CC}	DC supply current per supply pin	± 100	mA
I _{GND}	DC ground current per supply pin	± 100	mA
T _{stg}	Storage temperature	-65 to +150	°C
Τ _L	Lead temperature (10 sec)	300	°C

Table 3.	Absolute	maximum	ratings
	Absolute	maximum	raungs

- 1. I_O absolute maximum rating must be observed
- 2. V_O < GND

4.1 Recommended operating conditions

Table 4. Recommended operating conditions

Symsbol	Parameter	Value	Unit
V _{CC}	Supply voltage ⁽¹⁾	2.0 to 3.6	V
VI	Input voltage	0 to 5.5	V
Vo	Output voltage (OFF state)	0 to 5.5	V
Vo	Output voltage (high or low state)	0 to V _{CC}	V
I _{OH} , I _{OL}	High or low level output current ($V_{CC} = 3.0$ to 3.6V)	± 24	mA
I _{OH} , I _{OL}	High or low level output current ($V_{CC} = 2.7V$)	± 12	mA
T _{op}	Operating temperature	-40 to 85	°C
dt/dv	Input rise and fall time ⁽²⁾	0 to 10	ns/V

1. Truth table guaranteed: 1.5V to 3.6V

2. V_{IN} from 0.8V to 2V at V_{CC} = 3.0V

5 Electrical characteristics

C specifications	1				
	Те	est condition	Val	ue	
Parameter	v _{cc}		-40 to 85°C		Unit
	(V)		Min	Max	
High level input voltage	27 to 26		2.0		V
Low level input voltage	2.7 10 3.0			0.8	V
	2.7 to 3.6	I _O = -100μA	V _{CC} -0.2		
	2.7	I _O = -12mA	2.2		v
nigh level output voltage	2.0	I _O = -18mA	2.4		v
	3.0	I _O = -24mA	2.2		
	2.7 to 3.6	I _O = 100μA		0.2	
	2.7	I _O = 12mA		0.4	v
Low level output voltage	2.0	I _O = 16mA		0.4	v
	3.0	1 ₀ = 24mA		0.55	
Input leakage current	2.7 to 3.6	V _I = 0 to 5.5V		± 5	μA
Power OFF leakage current	0	$V_{\rm I}$ or $V_{\rm O} = 5.5 V$		10	μA
High impedance output leakage current	2.7 to 3.6	$V_{I} = V_{IH} \text{ or } V_{IL}$ $V_{O} = 0 \text{ to } V_{CC}$		± 5	μA
	0.74-0.0	$V_{I} = V_{CC}$ or GND		20	
Quiescent supply current	2.7 to 3.6	$V_{\rm I} \text{ or } V_{\rm O} = 3.6 \text{ to } 5.5 \text{V}$		± 20	- μΑ
l incr. per Input	2.7 to 3.6	$V_{IH} = V_{CC} - 0.6V$		500	μA
	Parameter High level input voltage Low level input voltage High level output voltage Low level output voltage Input leakage current Power OFF leakage Ligh impedance output leakage current High impedance output leakage current Quiescent supply current	ParameterVcc (V)High level input voltage2.7 to 3.6Low level input voltage2.7 to 3.6High level output voltage2.7 to 3.6Analysis2.7 to 3.6Low level output voltage2.7 to 3.6Power OFF leakage current0High impedance output leakage current2.7 to 3.6Quiescent supply current2.7 to 3.6	Test conditionParameterV_{CC} (V)High level input voltage2.7 to 3.6Low level input voltage2.7 to 3.6High level output voltage2.7 to 3.6High level output voltage2.7 to 3.6 $I_{O} = -12mA$ $I_{O} = -12mA$ $I_{O} = -18mA$ 3.0 $I_{O} = -18mA$ $I_{O} = -24mA$ 2.7 to 3.6 $I_{O} = 100\mu A$ 2.7 to 3.6 $I_{O} = 100\mu A$ $I_{O} = 0 to 5.5V$ $I_{O} = 0 to 5.5V$ Power OFF leakage current $V_{I} or V_{O} = 5.5V$ High impedance output leakage current $2.7 to 3.6$ $V_{I} = V_{IH} or V_{IL}$ $V_{O} = 0 to V_{CC}$ Quiescent supply current $2.7 to 3.6$ $V_{I} = V_{CC} or GND$ $V_{I} or V_{O} = 3.6 to 5.5V$	Test conditionValParameterV _{CC} (V)-40 toHigh level input voltage2.7 to 3.62.0Low level input voltage2.7 to 3.610 = -100 μ AV _{CC} -0.2High level output voltage2.7 to 3.610 = -100 μ AV _{CC} -0.23.02.7 to 3.610 = -12mA2.22.7 to 3.610 = -18mA2.43.010 = -24mA2.22.7 to 3.610 = 100 μ A2.22.7 to 3.610 = 100 μ A2.210 = 12mA2.22.710 = 12mA2.22.710 = 24mA2.22.710 = 24mA10 = 24mA2.210 = 24mA10 = 24mA10 = 24mA10 = 24mA10 = 24mA10 = 24mA10 = 24mA2.7 to 3.6V _I or V ₀ = 5.5VPower OFF leakage current0V _I or V ₀ = 5.5VHigh impedance output leakage current2.7 to 3.6V _I = V _{ICC} or GNDQuiescent supply current2.7 to 3.6V _I = V _{CC} or GNDQuiescent supply current2.7 to 3.6V _I or V ₀ = 3.6 to 5.5V	Parameter Test condition Value V_{CC} -40 to 85°C (V) Min Max High level input voltage 2.7 to 3.6 2.0 0.8 Low level input voltage 2.7 to 3.6 $I_O = -100 \mu A$ $V_{CC} - 0.2$ 0.8 High level output voltage 2.7 to 3.6 $I_O = -100 \mu A$ $V_{CC} - 0.2$ 0.8 High level output voltage 2.7 to 3.6 $I_O = -12mA$ 2.2 0.8 A_{AO} $I_O = -18mA$ 2.4 0.4 0.2 A_{AO} $I_O = -18mA$ 2.4 0.4 0.2 A_{AO} $I_O = 100 \mu A$ 0.2 0.4 0.4 0.2 A_{AO} $I_O = 100 \mu A$ 0.2 0.4 0.4 0.2 0.4 0.4 0.4 0.4 0.5 0.4 0.4 0.5 0.4 0.4 0.5 0.4 0.4 0.5 0.4 0.5 0.4 0.5 0.5 0.4 0.5 0.5 0.5 0.5 0.5 0.5

Table 5. DC specifications

Table 6. Dynamic switching characteristics

		Те	st condition		Value		
Symbol	Parameter	v _{cc}		T,	_A = 25 °	°C	Unit
		(V)		Min	Тур	Max	
V _{OLP}	Dynamic low level quiet	3.3	C _L = 50pF V _{IL} = 0V, V _{IH} = 3.3V		0.8		v
V _{OLV}	output ⁽¹⁾	3.3	$V_{IL} = 0V, V_{IH} = 3.3V$		-0.8		v

1. Number of outputs defined as "n". Measured with "n-1" outputs switching from HIGH to LOW or LOW to HIGH. The remaining output is measured in the LOW state.

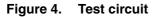
		Test condition Value						
Symbol	Parameter	V _{cc}	CL	RL	t _s = t _r	-40 to	85 °C	Unit
		(V)	(pF)	(Ω)	(ns)	Min	Max	
t _{PLH} t _{PHL}	Propagation delay	2.7	50	500	2.5	1.5	5.2	ns
PLH PHL	time	3.0 to 3.6	50	500	2.5	1.5	4.5	115
t _{PZL} t _{PZH}	Output enable	2.7	50	500	2.5	1.5	7.2	ns
PZL PZH	time	3.0 to 3.6	50	500	2.5	1.5	6.5	115
t _{PLZ} t _{PHZ}	Output disable	2.7	50	500	2.5	1.5	6.9	ns
PLZ PHZ	time	3.0 to 3.6	50	500	2.5	1.5	6.4	115
t _{OSLH} t _{OSHL}	Output to output skew time ^{(1) (2)}	3.0 to 3.6	50	500	2.5		1.0	ns

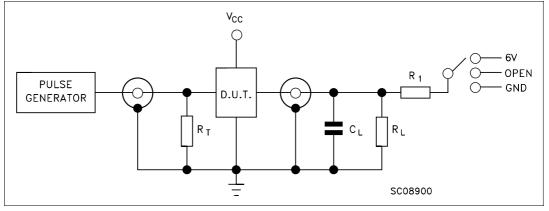
Table 7. AC electrical characteristics

 Skew is defined as the absolute value of the difference between the actual propagation delay for any two outputs of the same device switching in the same direction, either HIGH or LOW (t_{OSLH} = | t_{PLHm} - t_{PLHn}|, t_{OSHL} = | t_{PHLm} - t_{PHLn}|)

2. Parameter guaranteed by design

Table 8. Capacitive characteristics


		Tes	t condition		Value		
Symbol	Parameter	V _{cc}	37 6	Т	A = 25 °	С	Unit
		(V)	1 million	Min	Тур	Max	
C _{IN}	Input capacitance	3.3	$V_{IN} = 0$ to V_{CC}		7		pF
C _{OUT}	Output capacitance	3.3	$V_{\rm IN} = 0$ to $V_{\rm CC}$		8		pF
C _{PD}	Power dissipation capacitance ⁽¹⁾	3.3	f _{IN} = 10MHz V _{IN} = 0 or V _{CC}		20		pF


£....

1. C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{CC(opr)} = C_{PD} \times V_{CC} \times f_{IN} + I_{CC}/16$ (per circuit)

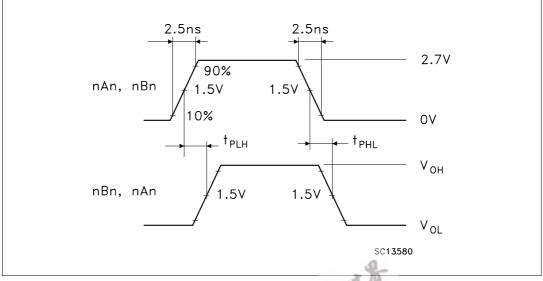
6 Test circuit

Figure 5. Test circuit

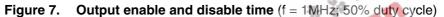
Test	Switch
t _{PLH} , t _{PHL}	Open
t _{PZL} , t _{PLZ}	6V
t _{PZH} , t _{PHZ}	GND

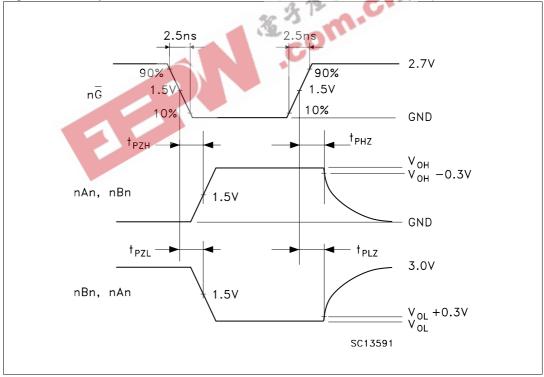
.

 $C_L = 50 pF$ or equivalent (includes jig and probe capacitance)

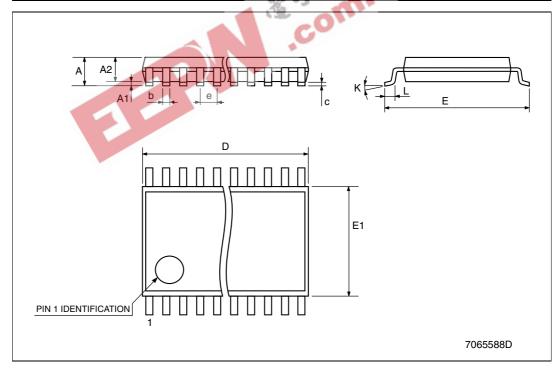

 $R_L = R_1 = 500\Omega$ or equivalent

 $R_T = Z_{OUT}$ of pulse generator (typically 50 Ω)

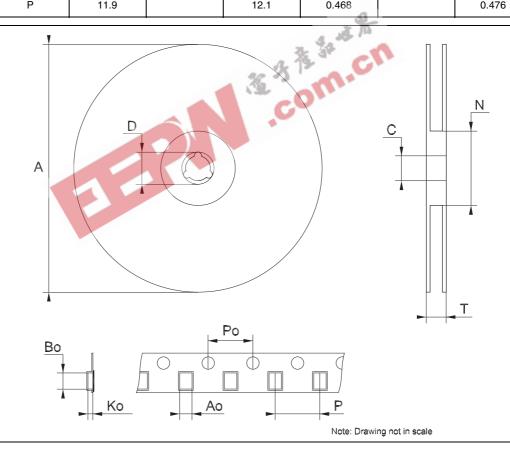

3-



7 Waveforms


8 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com



	TSSOP48 MECHANICAL DATA								
DIM.	mm.			inch					
	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.			
A			1.2			0.047			
A1	0.05		0.15	0.002		0.006			
A2		0.9			0.035				
b	0.17		0.27	0.0067		0.011			
с	0.09		0.20	0.0035		0.0079			
D	12.4		12.6	0.488		0.496			
E		8.1 BSC			0.318 BSC				
E1	6.0		6.2	0.236		0.244			
е		0.5 BSC		\$	0.0197 BSC				
к	0°		8°	4 0°		8°			
L	0.45		0.75	0.018		0.030			

DIM.	mm.			inch		
	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.
А			330			12.992
С	12.8		13.2	0.504		0.519
D	20.2			0.795		
Ν	60			2.362		
т			30.4			1.197
Ao	8.7		8.9	0.343		0.350
Во	13.1		13.3	0.516		0.524
Ko	1.5		1.7	0.059		0.067
Po	3.9		4.1	0.153		0.161
Р	11.9		12.1	0.468		0.476

9 Revision history

Table 9. Revision history

Date	Revision	Changes	
15-Sep-2004	6	Ordering Codes Revision - pag. 1.	
06-Feb-2007	7	Document reformatted, temperature ranges updated	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OF WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OF SYSTEMS WHERE FAILURE OF MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OF ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

