

April 1988 Revised April 1999

74F245

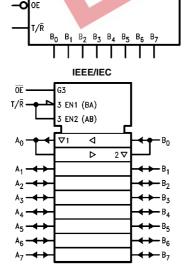
Octal Bidirectional Transceiver with 3-STATE Outputs

General Description

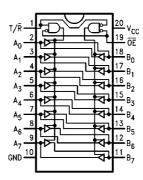
The 74F245 contains eight non-inverting bidirectional buffers with 3-STATE outputs and is intended for bus-oriented applications. Current sinking capability is 24 mA at the A Ports and 64 mA at the B Ports. The Transmit/Receive (T/R) input determines the direction of data flow through the bidirectional transceiver. Transmit (active HIGH) enables data from A Ports to B Ports; Receive (active LOW) enables data from B Ports to A Ports. The Output

Enable input, when HIGH, disables both A and B Ports by placing them in a High Z condition.

Features


- Non-inverting buffers
- Bidirectional data path
- A outputs sink 24 mA
- B outputs sink 64 mA

Ordering Code:


		400 7.20%
Order Number	Package Number	Package Description
74F245SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
74F245SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74F245MSA	MSA20	20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide
74F245MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74F245PC	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbols

Connection Diagram

Unit Loading/Fan Out

Din Names	Description	U.L.	Input I _{IH} /I _{IL}		
Pin Names	Description	HIGH/LOW	Output I _{OH} /I _{OL}		
ŌĒ	Output Enable Input (Active LOW)	1.0/2.0	20 μA/–1.2 mA		
T/R	Transmit/Receive Input	1.0/2.0	20 μA/–1.2 mA		
A ₀ -A ₇	Side A Inputs or	3.5/1.083	70 μA/–0.65 mA		
	3-STATE Outputs	150/40(38.3)	-3 mA/24 mA (20 mA)		
B ₀ -B ₇	Side B Inputs or	3.5/1.083	70 μA/–0.65 mA		
	3-STATE Outputs	600/106.6(80)	-12 mA/64 mA (48 mA)		

Truth Table

	Input	s	Output		
	OE	T/R	Output		
	L	L	Bus B Data to Bus A		
	L	Н	Bus A Data to Bus B		
	Н	X	High Z State		
e Leve			.com		

H = HIGH Voltage Level

L = LOW Voltage Level X = Immaterial

Absolute Maximum Ratings(Note 1)

Recommended Operating Conditions

Storage Temperature -65°C to +150°C

Ambient Temperature under Bias -55°C to +125°C Junction Temperature under Bias -55°C to +150°C V_{CC} Pin Potential to Ground Pin -0.5V to +7.0V

Input Voltage (Note 2) -0.5V to +7.0VInput Current (Note 2) -30 mA to +5.0 mA

Voltage Applied to Output in HIGH State (with $V_{CC} = 0V$)

Standard Output –0.5V to $V_{\mbox{\footnotesize CC}}$ 3-STATE Output -0.5V to +5.5V

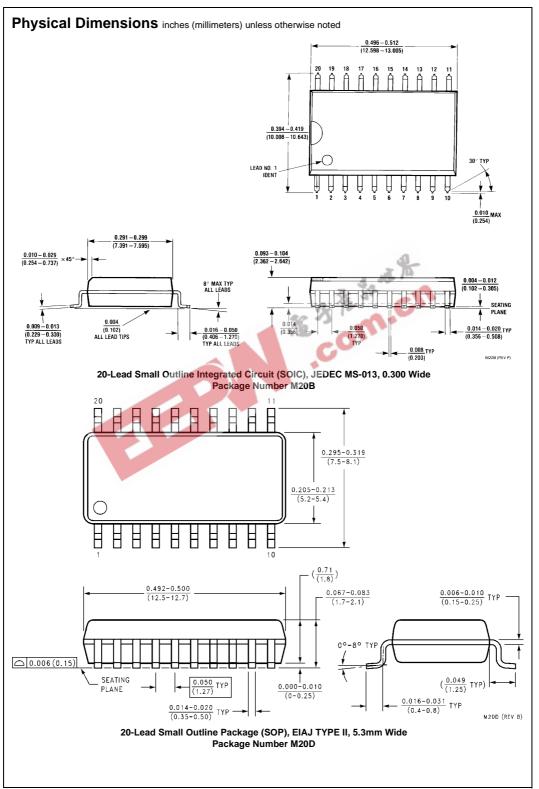
Current Applied to Output

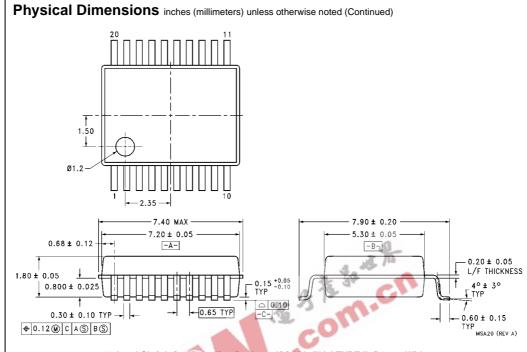
twice the rated I_{OL} (mA) in LOW State (Max) ESD Last Passing Voltage (Min)

Free Air Ambient Temperature 0°C to +70°C Supply Voltage +4.5V to +5.5V

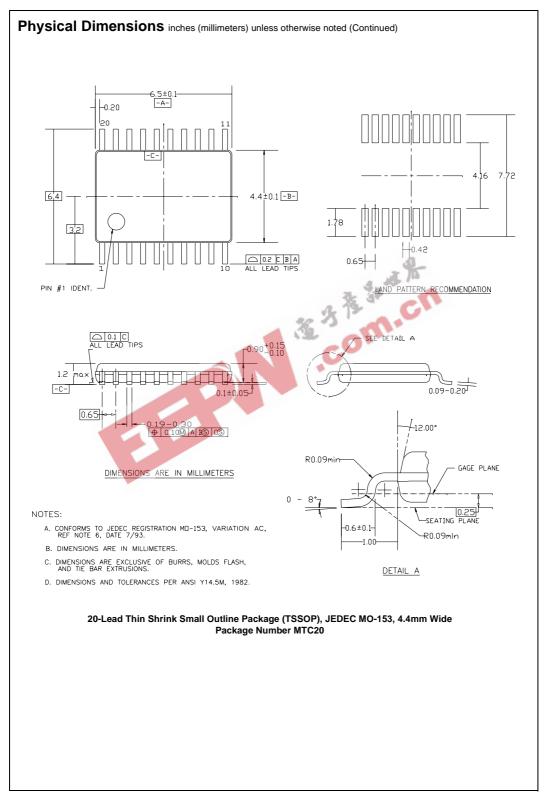
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

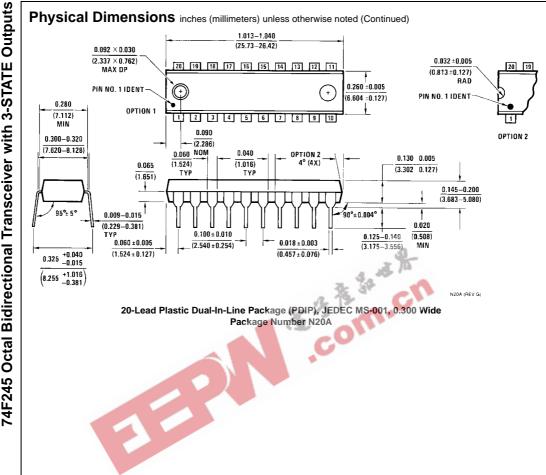
3_


Note 2: Either voltage limit or current limit is sufficient to protect inputs.


DC Electrical Characteristics

Symbol	Parameter	Min	Тур	Max	Units	Vcc	Conditions
V _{IH}	Input HIGH Voltage	2.0			V		Recognized as a HIGH Signal
V _{IL}	Input LOW Voltage			0.8	V	C	Recognized as a LOW Signal
V _{CD}	Input Clamp Diode Voltage			-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH Voltage 10% V _{CC}	2.4		CIL	V	Min	$I_{OH} = -3 \text{ mA } (A_n)$
	10% V _{CC}	2.0		-	0		$I_{OH} = -15 \text{ mA } (B_n)$
	5% V _{CC}	2.7					$I_{OH} = -3 \text{ mA } (A_n)$
V _{OL}	Output LOW Voltage 10% V _{CC}	77. 1		0.5	V	Min	$I_{OL} = 24 \text{ mA } (A_n)$
	10% V _{CC}			0.55			$I_{OL} = 64 \text{ mA } (B_n)$
I _{IH}	Input HIGH Current			5.0	μΑ	Max	V _{IN} = 2.7V
I _{BVI}	Input HIGH Current Breakdown Test			7.0	μΑ	Max	$V_{IN} = 7.0V (\overline{OE}, T/\overline{R})$
I _{BVIT}	Input HIGH Current Breakdown (I/O)			0.5	mA	Max	$V_{IN} = 5.5 \text{ V } (A_n, B_n)$
I _{CEX}	Output HIGH Leakage Current			50	μΑ	Max	$V_{OUT} = V_{CC} (A_n, B_n)$
V _{ID}	Input Leakage	4.75			V	0.0	$I_{ID} = 1.9 \mu A$
	Test						All Other Pins Grounded
I _{OD}	Output Leakage			3.75	μΑ	0.0	V _{IOD} = 150 mV
	Circuit Current						All Other Pins Grounded
I _{IL}	Input LOW Current			-1.2	mA	Max	$V_{IN} = 0.5V (T/\overline{R}, \overline{OE})$
I _{IH} + I _{OZH}	Output Leakage Current			70	μΑ	Max	$V_{OUT} = 2.7V (A_n, B_n)$
I _{IL} + I _{OZL}	Output Leakage Current			-650	μΑ	Max	$V_{OUT} = 0.5V (A_n, B_n)$
Ios	Output Short-Circuit Current	-60		-150	mA	Max	$V_{OUT} = 0V (A_n)$
		-100		-225			$V_{OUT} = 0V (B_n)$
I _{ZZ}	Bus Drainage Test			500	μΑ	0.0V	$V_{OUT} = 5.25V(A_n, B_n)$
I _{CCH}	Power Supply Current		70	90	mA	Max	V _O = HIGH
I _{CCL}	Power Supply Current		95	120	mA	Max	$V_O = LOW$
I _{CCZ}	Power Supply Current		85	110	mA	Max	V _O = HIGH Z


Symbol			$T_A = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_L = 50 \text{ pF}$			$T_A = -55$ °C to +125°C $C_L = 50 \text{ pF}$		$T_A = 0$ °C to $+70$ °C $C_L = 50$ pF	
	Parameter								
		Min	Тур	Max	Min	Max	Min	Max	
t _{PLH}	Propagation Delay	2.5	4.2	6.0	2.0	7.5	2.0	7.0	n
t _{PHL}	A_n to B_n or B_n to A_n	2.5	4.2	6.0	2.0	7.5	2.0	7.0	
t _{PZH}	Output Enable Time	3.0	5.3	7.0	2.5	9.0	2.5	8.0	
t_{PZL}		3.5	6.0	8.0	3.0	10.0	3.0	9.0	n
t _{PHZ}	Output Disable Time	2.0	5.0	6.5	2.0	9.0	2.0	7.5	1
t_{PLZ}		2.0	5.0	6.5	2.0	10.0	2.0	7.5	



20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide Package Number MSA20

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com