

November 1992 Revised March 2005

74ABT574 Octal D-Type Flip-Flop with 3-STATE Outputs

General Description

The ABT574 is an octal flip-flop with a buffered common Clock (CP) and a buffered common Output Enable (\overline{OE}) . The information presented to the D inputs is stored in the flip-flops on the LOW-to-HIGH Clock (CP) transition.

The device is functionally identical to the ABT374 but has broadside pinouts.

Features

- Inputs and outputs on opposite sides of package allowing easy interface with microprocessors
- Useful as input or output port for microprocessors
- Functionally identical to ABT374
- 3-STATE outputs for bus-oriented applications
- Output sink capability of 64 mA, source capability of 32 mA
- Guaranteed output skew
- Guaranteed multiple output switching specifications
- Output switching specified for both 50 pF and 250 pF loads
- Guaranteed simultaneous switching, noise level and dynamic threshold performance
- Guaranteed latchup protection
- High impedance glitch free bus loading during entire power up and power down cycle
- Non-destructive hot insertion capability

Ordering Code:

Order Number	Package Number	Package Description
74ABT574CSC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74ABT574CSJ	M20D	Pb-Free 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74ABT574CMSA	MSA20	20-Lead Shrink Small Outline Package (SSOP), JEDEC MO-150, 5.3mm Wide
74ABT574CMTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Pb-Free package per JEDEC J-STD-020B.

Connection Diagram

Pin Descriptions

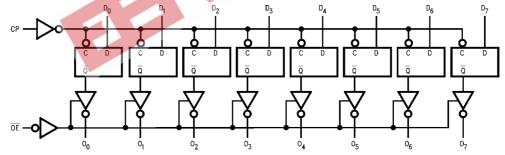
Pin Names	Description
D ₀ –D ₇	Data Inputs
	Clock Pulse Input (Active Rising Edge)
ŌĒ	3-STATE Output Enable Input (Active LOW)
O ₀ -O ₇	3-STATE Outputs

Functional Description

The ABT574 consists of eight edge-triggered flip-flops with individual D-type inputs and 3-STATE true outputs. The buffered clock and buffered Output Enable are common to all flip-flops. The eight flip-flops will store the state of their individual D inputs that meet the setup and hold times requirements on the LOW-to-HIGH Clock (CP) transition.

With the Output Enable (OE) LOW, the contents of the eight flip-flops are available at the outputs. When $\overline{\text{OE}}$ is HIGH, the outputs are in a high impedance state. Operation of the OE input does not affect the state of the flip-

Function Table


	Inputs		Internal	Outputs	Function
OE	СР	D	Q	0	
Н	H or L	L	NC	Z	Hold
Н	H or L	Н	NC	Z	Hold
Н	~	L	L	Z	Load
Н	~	Н	Н	Z	Load
L	~	L	L	L	Data Available
L	~	Н	Н	Н	Data Available
L	H or L	L	NC	NC _	No Change in Data
L	H or L	Н	NC	NC	No Change in Data

- H = HIGH Voltage Level
- L = LOW Voltage Level X = Immaterial

- Z = High Impedance

 = LOW-to-HIGH Transition
 NC = No Change

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings(Note 1)

-65°C to +150°C

Ambient Temperature under Bias -55°C to +125°C Junction Temperature under Bias -55°C to +150°C V_{CC} Pin Potential to Ground Pin -0.5V to +7.0V

Input Voltage (Note 2) -0.5V to +7.0VInput Current (Note 2) -30 mA to +5.0 mA

Voltage Applied to Any Output

in the Disabled or

Storage Temperature

Power-Off State -0.5V to 5.5V in the HIGH State –0.5V to $V_{\mbox{\footnotesize CC}}$

Current Applied to Output

in LOW State (Max) twice the rated I_{OL} (mA) -500 mA

DC Latchup Source Current

Over Voltage Latchup (I/O)

Recommended Operating Conditions

Free Air Ambient Temperature -40°C to +85°C Supply Voltage +4.5V to +5.5V

Minimum Input Edge Rate (ΔV/Δt)

50 mV/ns Data Input Enable Input 20 mV/ns Clock Input 100 mV/ns

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation

under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

	4
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	A A
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	IA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
1 V _{IN} = V _{CC} I _{BVI} Input HIGH Current Breakdown Test	Note 3)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
\sim 1 μ A \sim 1	
-1 V _{IN} = 0.0V	Note 3)
V_{ID} Input Leakage Test 4.75 V 0.0 I $_{\text{ID}}$ = 1.9 μA	
All Other Pi	ns Grounded
I_{OZH} Output Leakage Current 10 μ A 0 – 5.5V V_{OUT} = 2.7V	√; OE = 2.0V
I _{OZL} Output Leakage Current -10 μA 0 - 5.5V V _{OUT} = 0.5V	√; OE = 2.0V
I _{OS} Output Short-Circuit Current –100 –275 mA Max V _{OUT} = 0.01	7
I_{CEX} Output High Leakage Current 50 μA Max $V_{OUT} = V_{CO}$	
I_{ZZ} Bus Drainage Test 100 μA 0.0 $V_{OUT} = 5.5$	/; All Other GND
I _{CCH} Power Supply Current 50 μA Max All Outputs	HIGH
I _{CCL} Power Supply Current 30 mA Max All Outputs	LOW
I_{CCZ} Power Supply Current 50 μA Max $\overline{OE} = V_{CC}$	
All Others a	it V _{CC} or GND
I _{CCT} Additional I _{CC} /Input Outputs Enabled 2.5 mA V _I = V _{CC} - 2	2.1V
Outputs 3-STATE 2.5 mA Max Enable Inpu	$t V_I = V_{CC} - 2.1V$
Outputs 3-STATE 2.5 mA Data Input	$V_I = V_{CC} - 2.1V$
All Others a	it V _{CC} or GND
I _{CCD} Dynamic I _{CC} No Load mA/ Outputs Op	en, $\overline{OE} = GND,$
I Max I	gling (Note 4),
50% Duty C	

Note 3: Guaranteed, but not tested.

Note 4: For 8-bit toggling, $I_{CCD} < 0.8 \ mA/MHz.$

DC Electrical Characteristics

SOIC Package

Symbol	Parameter	Min	Тур	Max	Units	V _{CC}	Conditions $C_L = 50 \text{ pF}, R_L = 500 \Omega$
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}		0.7	1.0	V	5.0	T _A = 25°C (Note 5)
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	-1.5	-1.1		V	5.0	T _A = 25°C (Note 5)
V _{OHV}	Minimum HIGH Level Dynamic Output Voltage	2.5	3.0		V	5.0	T _A = 25°C (Note 6)
V_{IHD}	Minimum HIGH Level Dynamic Input Voltage	2.0	1.6		V	5.0	T _A = 25°C (Note 7)
V_{ILD}	Maximum LOW Level Dynamic Input Voltage		1.2	8.0	٧	5.0	T _A = 25°C (Note 7)

Note 5: Max number of outputs defined as (n). n - 1 data inputs are driven 0V to 3V. One output at LOW. Guaranteed, but not tested.

Note 6: Max number of outputs defined as (n). n – 1 data inputs are driven 0V to 3V. One output HIGH. Guaranteed, but not tested.

Note 7: Max number of data inputs (n) switching. n – 1 inputs switching 0V to 3V. Input-under-test switching: 3V to threshold (V_{ILD}), 0V to threshold (V_{IHD}).

AC Electrical Characteristics

(SOIC and SSOP Package)

Symbol Parameter		$T_A = +25^{\circ}\text{C}$ $V_{CC} = +5.0\text{V}$ $C_L = 50 \text{ pF}$			$T_A = -55^{\circ}C \text{ to } +125^{\circ}C$ $V_{CC} = 4.5V \text{ to } 5.5V$ $C_L = 50 \text{ pF}$		$T_A = -40$ °C to $+85$ °C $V_{CC} = 4.5$ V to 5.5 V $C_L = 50$ pF		Units
		Min	Тур	Max	Min	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency	150	200		150		150		MHz
t _{PLH}	Propagation Delay	2.0	3.2	5.0	1.5	7.0	2.0	5.0	ns
t _{PHL}	CP to O _n	2.0	3.3	5.0	1.5	7.4	2.0	5.0	115
t _{PZH}	Output Enable Time	1.5	3.1	5.3	1.0	6.5	1.5	5.3	ns
t_{PZL}		1.5	3.1	5.3	1.0	7.2	1.5	5.3	113
t _{PHZ}	Output Disable Time	1.5	3.6	5.4	1.0	7.2	1.5	5.4	ns
t_{PLZ}		1.5	3.4	5.4	1.0	6.7	1.5	5.4	113

AC Operating Requirements

Symbol	Parameter	$T_A = +25$ °C $V_{CC} = +5.0V$ $C_L = 50 \text{ pF}$		$T_A = -55$ °C to +125°C $V_{CC} = 4.5$ V to 5.5V $C_L = 50$ pF		$T_A = -40$ °C to $+85$ °C $V_{CC} = 4.5$ V to 5.5 V $C_L = 50$ pF		Units	
		Min	Max	Min	Max	Min	Max		
t _S (H)	Setup Time, HIGH	1.0		1.5		1.0			
t _S (L)	or LOW D _n to CP	1.5		2.0		1.5		ns	
t _H (H)	Hold Time, HIGH	1.0		2.0		1.0			
t _H (L)	or LOW D _n to CP	1.0		2.0		1.0		ns	
t _W (H)	Pulse Width, CP,	3.0		3.3		3.0		no	
$t_W(L)$	HIGH or LOW	3.0		3.3		3.0		ns	

Extended AC Electrical Characteristics

(SOIC Package)

Symbol	Parameter	V _{CC} = 4.5 C _L = 8 Outputs	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$ $V_{CC} = 4.5\text{V to } 5.5\text{V}$ $C_L = 50 \text{ pF}$ 8 Outputs Switching (Note 8)		$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$ $V_{CC} = 4.5\text{V to } 5.5\text{V}$ $C_L = 250 \text{ pF}$ (Note 9)		$T_A = -40$ °C to +85°C $V_{CC} = 4.5$ V to 5.5V $C_L = 250$ pF 8 Outputs Switching (Note 10)		
		Min	Max	Min	Max	Min	Max		
t _{PLH}	Propagation Delay	1.5	5.7	2.0	7.8	2.0	10.0	20	
t _{PHL}	CP to O _n	1.5	5.7	2.0	7.8	2.0	10.0	ns	
t _{PZH}	Output Enable Time	1.5	6.2	2.0	8.0	2.0	10.5		
t_{PZL}		1.5	6.2	2.0	8.0	2.0	10.5	ns	
t _{PHZ}	Output Disable Time	1.0	5.5	(Note 11)		(Note 44)			
t_{PLZ}		1.0	5.5	(NOI	(Note 11) (Note 11)		C 11)	ns	

Note 8: This specification is guaranteed but not tested. The limits apply to propagation delays for all paths described switching in phase (i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.).

Note 9: This specification is guaranteed but not tested. The limits represent propagation delay with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load. This specification pertains to single output switching only.

Note 10: This specification is guaranteed but not tested. The limits represent propagation delays for all paths described switching in phase (i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.) with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load.

Note 11: The 3-STATE Delay Times are dominated by the RC network $(500\Omega, 250 \, pF)$ on the output and has been excluded from the datasheet.

Skew (Note 12)

(SOIC package)

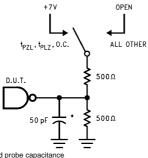
Symbol	Parameter	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$ $V_{CC} = 4.5V - 5.5V$ $C_L = 50 \text{ pF}$ 8 Outputs Switching (Note 12)	T _A = -40 °C to +85 °C V _{CC} = 4.5V-5.5V C _L = 250 pF 8 Outputs Switching (Note 13) Max	Units
t _{OSHL} (Note 14)	Pin to Pin Skew HL Transitions	1.0	1.8	ns
t _{OSLH} (Note 14)	Pin to Pin Skew LH Transitions	1.0	1.8	ns
t _{PS} (Note 15)	Duty Cycle LH–HL Skew	1.8	4.3	ns
t _{OST} (Note 14)	Pin to Pin Skew LH/HL Transitions	2.0	4.3	ns
t _{PV} (Note 16)	Device to Device Skew LH/HL Transitions	2.5	4.6	ns

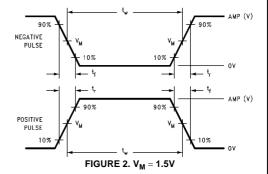
Note 12: This specification is guaranteed but not tested. The limits apply to propagation delays for all paths described switching in phase (i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.).

Note 13: This specification is guaranteed but not tested. The limits represent propagation delays with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load.

Note 14: Skew is defined as the absolute value of the difference between the actual propagation delays for any two separate outputs of the same device. The specification applies to any outputs switching HIGH-to-LOW (t_{OSHL}), LOW-to-HIGH (t_{OSLH}), or any combination switching LOW-to-HIGH and/or HIGH-to-LOW (t_{OST}). This specification is guaranteed but not tested.

Note 15: This describes the difference between the delay of the LOW-to-HIGH and the HIGH-to-LOW transition on the same pin. It is measured across all the outputs (drivers) on the same chip, the worst (largest delta) number is the guaranteed specification. This specification is guaranteed but not tested.


Note 16: Propagation delay variation for a given set of conditions (i.e., temperature and V_{CC}) from device to device. This specification is guaranteed but not tested.


Capacitance

Symbol	Parameter	Тур	Units	Conditions T _A = 25°C
C _{IN}	Input Capacitance	5.0	pF	V _{CC} = 0V
C _{OUT} (Note 17)	Output Capacitance	9.0	pF	V _{CC} = 5.0V

Note 17: C_{OUT} is measured at frequency f = 1 MHz, per MIL-STD-883, Method 3012.

AC Loading

*Includes jig and probe capacitance

FIGURE 1. Standard AC Test Load

Input Pulse Requirements

Amplitude	Rep. Rate	t _W	t _r	t _f
3.0V	1 MHz	500 ns	2.5 ns	2.5 ns

FIGURE 3. Test Input Signal Requirements

AC Waveforms

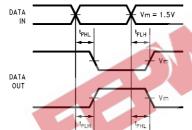


FIGURE 4. Propagation Delay Waveforms for Inverting and Non-Inverting Functions

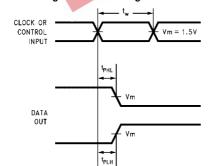


FIGURE 5. Propagation Delay, Pulse Width Waveforms

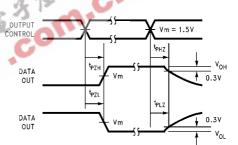
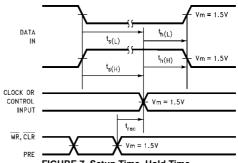
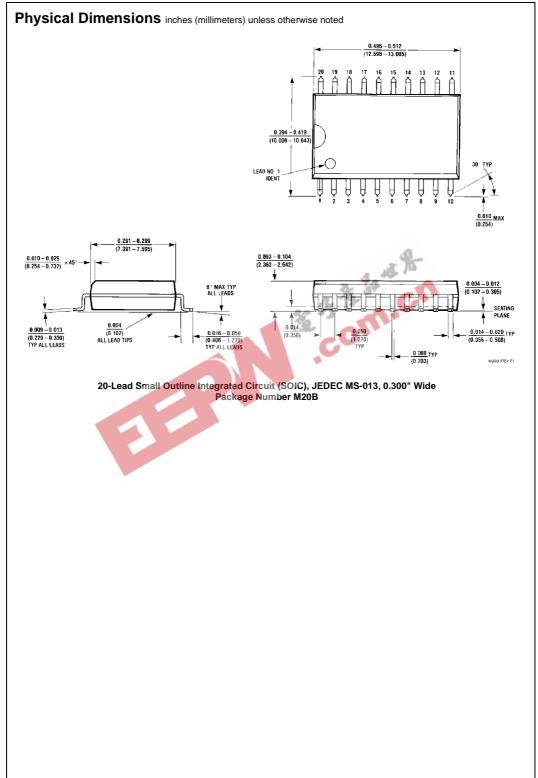
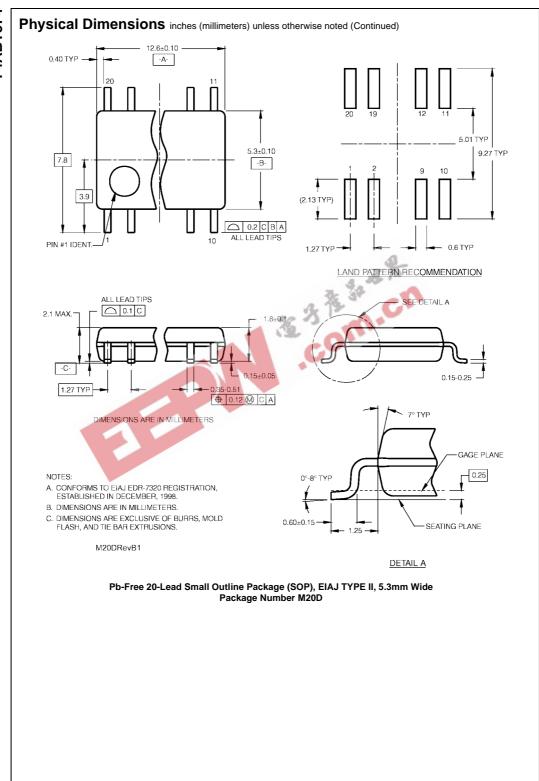
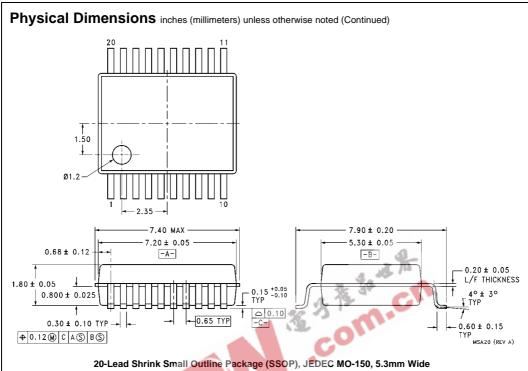
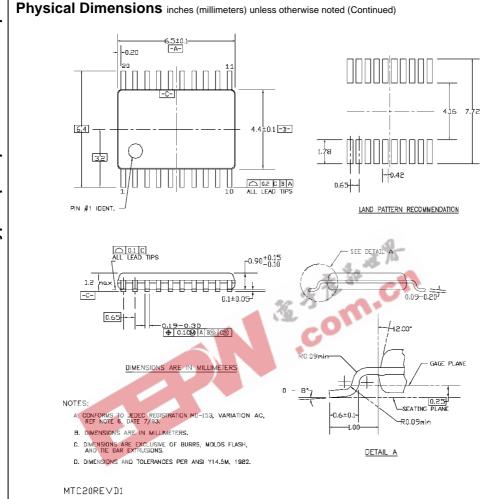


FIGURE 6. 3-STATE Output HIGH and LOW Enable and Disable Times


FIGURE 7. Setup Time, Hold Time and Recovery Time Waveforms

20-Lead Shrink Small Outline Package (SSOP), JEDEC MO-150, 5.3mm Wide Package Number MSA20

20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC20

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com