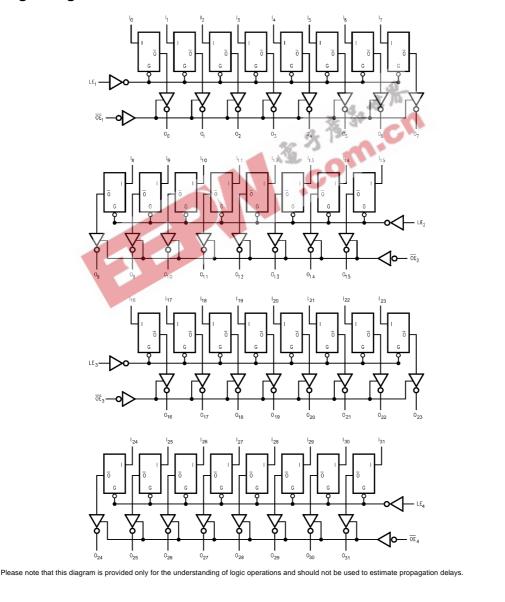

'4VCX32373 Low Voltage 32-Bit Transparent Latch with 3.6V Tolerant Inputs and Outputs (Preliminary)


www.fairchildsemi.com

Functional Description

The 74VCX32373 contains thirty-two edge D-type latches with 3-STATE outputs. The device is byte controlled with each byte functioning identically, but independent of the other. Control pins can be shorted together to obtain full 32-bit operation. The following description applies to each byte. When the Latch Enable (LE_n) input is HIGH, data on the I_n enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time

its I input changes. When LE_n is LOW, the latches store information that was present on the I inputs a setup time preceding the HIGH-to-LOW transition on LE_n. The 3-STATE outputs are controlled by the Output Enable (\overline{OE}_n) input. When \overline{OE}_n is LOW the standard outputs are in the 2-state mode. When \overline{OE}_n is HIGH, the standard outputs are in the high impedance mode but this does not interfere with entering new data into the latches.

Logic Diagrams

1.65V to 3.6V

Absolute Maximum Ra	tings(Note 3)
Supply Voltage (V _{CC})	-0.5V to +4
DC Input Voltage (V _I)	-0.5V to +4
Output Voltage (V _O)	
Outputs 3-STATED	-0.5V to +4
Outputs Active (Note 4)	-0.5V to V _{CC} +0
DC Input Diode Current (I_{IK}) $V_I < 0V$	-50
DC Output Diode Current (I _{OK})	
V _O < 0V	-50

74VCX32373

DC Input Diode Current (I_{IK}) $V_I < 0V$	–50 mA
DC Output Diode Current (I _{OK})	
V _O < 0V	–50 mA
$V_{O} > V_{CC}$	+50 mA
DC Output Source/Sink Current	
(I _{OH} /I _{OL})	±50 mA
DC V_{CC} or GND Current per	
Supply Pin (I _{CC} or GND)	±100 mA
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$

Recommended Operating Conditions (Note 5) Power Supply Operating

Data Retention Only	1.2V to 3.6V
Input Voltage	-0.3V to +3.6V
Output Voltage (V _O)	
Output in Active States	0V to V_{CC}
Output in "OFF" State	0.0V to 3.6V
Output Current in I _{OH} /I _{OL}	
$V_{CC} = 3.0V$ to 3.6V	±24 mA
$V_{CC} = 2.3 V$ to 2.7 V	±18 mA
$V_{CC} = 1.65V$ to 2.3V	±6 mA
Free Air Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Minimum Input Edge Rate ($\Delta t/\Delta V$)	

 $V_{\rm IN} = 0.8V$ to 2.0V, $V_{\rm CC} = 3.0V$ 10 ns/V Note 3: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Rat-ings. The "Recommended Operating Conditions" table will define the condi-tions for actual device operation.

Note 4: I_O Absolute Maximum Rating must be observed. Note 5: Floating or unused inputs must be held HIGH or LOW.

DC Electrical Characteristics (2.7V < V_{CC} ≤ 3.6V)

-0.5V to +4.6V -0.5V to +4.6V

-0.5V to +4.6V –0.5V to V_{CC} +0.5V

Symbol	Parameter	Conditions	V _{CC} (V)	Min	Max	Units
V _{IH}	HIGH Level Input Voltage		2.7–3.6	2.0		V
V _{IL}	LOW Level Input Voltage		2.7–3.6		0.8	V
V _{OH}	HIGH Level Output Voltage	I _{OH} = -100 μA	2.7–3.6	V _{CC} - 0.2		V
		$I_{OH} = -12 \text{ mA}$	2.7	2.2		V
		I _{OH} = -18 mA	3.0	2.4		V
		$I_{OH} = -24 \text{ mA}$	3.0	2.2		V
V _{OL}	LOW Level Output Voltage	$I_{OL} = 100 \ \mu A$	2.7–3.6		0.2	V
		I _{OL} = 12 mA	2.7		0.4	V
		I _{OL} = 18 mA	3.0		0.4	V
		$I_{OL} = 24 \text{ mA}$	3.0		0.55	V
I _I	Input Leakage Current	$0 \le V_I \le 3.6V$	2.7–3.6		±5.0	μΑ
l _{oz}	3-STATE Output Leakage	$0 \le V_O \le 3.6V$	2.7-3.6		±10	
		$V_I = V_{IH} \text{ or } V_{IL}$	2.7-3.0		±10	μA
I _{OFF}	Power-OFF Leakage Current	$0 \leq (V_I, V_O) \leq 3.6V$	0		10	μA
I _{CC}	Quiescent Supply Current	$V_I = V_{CC}$ or GND	2.7–3.6	İ	20	μA
		$V_{CC} \leq (V_I, V_O) \leq 3.6V$ (Note 6)	2.7–3.6		±20	μA
Δl _{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	2.7-3.6	1	750	μΑ

Note 6: Outputs disabled or 3-STATE only.

Symbol	Parameter	Conditions	V _{cc} (V)	Min	Max	Units
′ін	HIGH Level Input Voltage		2.3 - 2.7	1.6		V
IL	LOW Level Input Voltage		2.3 – 2.7		0.7	V
ОН	HIGH Level Output Voltage	I _{OH} = -100 μA	2.3 - 2.7	V _{CC} - 0.2		V
		$I_{OH} = -6 \text{ mA}$	2.3	2.0		V
		$I_{OH} = -12 \text{ mA}$	2.3	1.8		V
		$I_{OH} = -18 \text{ mA}$	2.3	1.7		V
OL	LOW Level Output Voltage	I _{OL} = 100 μA	2.3 – 2.7		0.2	V
		I _{OL} = 12 mA	2.3		0.4	V
		I _{OL} = 18 mA	2.3		0.6	V
	Input Leakage Current	$0 \le V_1 \le 3.6V$	2.3 – 2.7		±5.0	μA
Z	3-STATE Output Leakage	$0 \le V_O \le 3.6V$ $V_I = V_{IH}$ or V_{IL}	2.3 – 2.7		±10	μΑ
DFF	Power-OFF Leakage Current	$0 \le (V_{I}, V_{O}) \le 3.6V$	0		10	μA
C	Quiescent Supply Current	$V_I = V_{CC}$ or GND	2.3 – 2.7		20	μA
		$V_{CC} \le (V_1, V_0) \le 3.6V$ (Note 7)	2.3 - 2.7	Sec.	±20	μA

DC Electrical Characteristics (1.65V \leq V_{CC} < 2.3V)

Symbol	Parameter	Conditions	V _{CC} (V)	Min	Max	Units
V _{IH}	HIGH Level Input Voltage		1.65 - 2.3	$0.65 imes V_{CC}$		V
V _{IL}	LOW Level Input Voltage		1.65 - 2.3		$0.35 \times V_{CC}$	V
V _{OH}	HIGH Level Output Voltage	I _{OH} = -100 μA	1.65 - 2.3	V _{CC} - 0.2		V
		$I_{OH} = -6 \text{ mA}$	1.65	1.25		V
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	1.65 - 2.3		0.2	V
		I _{OL} = 6 mA	1.65		0.3	V
l _l	Input Leakage Current	$0 \le V_i \le 3.6V$	1.65 - 2.3		±5.0	μΑ
I _{OZ}	3-STATE Output Leakage	$\begin{array}{l} 0 \leq V_O \leq 3.6V \\ V_I = V_{IH} \text{ or } V_{IL} \end{array}$	1.65 - 2.3		±10	μA
I _{OFF}	Power-OFF Leakage Current	$0 \leq (V_I, V_O) \leq 3.6V$	0		10	μA
I _{CC}	Quiescent Supply Current	$V_I = V_{CC}$ or GND	1.65 - 2.3		20	μA
		$V_{CC} \le (V_1, V_0) \le 3.6V$ (Note 8)	1.65 – 2.3		±20	μΑ

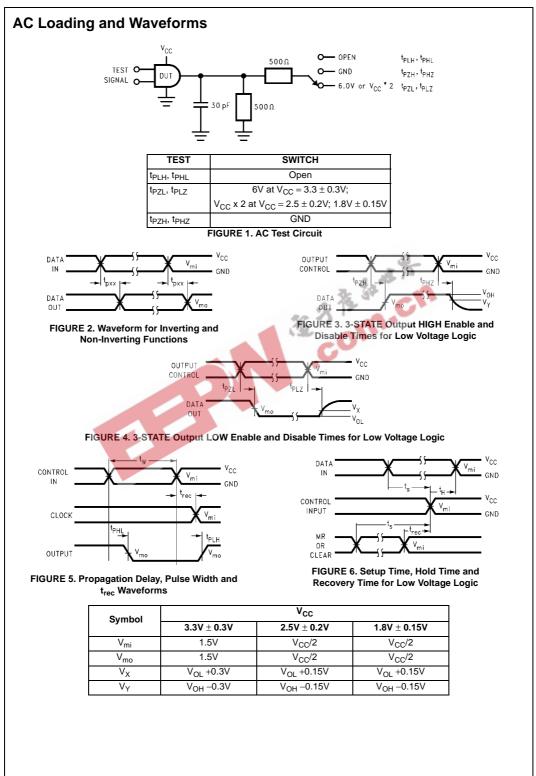
Note 8: Outputs disabled or 3-STATE only.

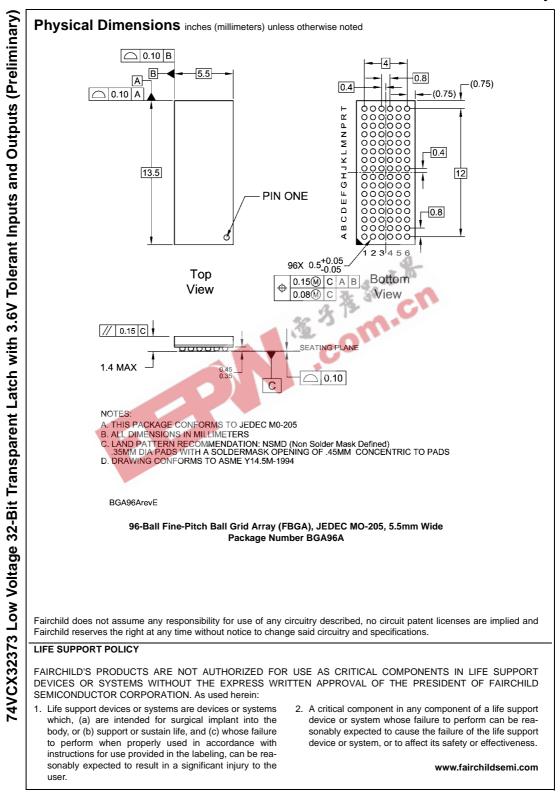
-

74VCX32373

74VCX32373

			T $_{\text{A}}$ = -40°C to +85°C, C $_{\text{L}}$ = 30 pF, R $_{\text{L}}$ = 500 Ω					
Symbol	Parameter	$V_{CC} = 3.3V \pm 0.3V$ $V_{CC} = 2.5V \pm 0.2V$ $V_{CC} = 1.8V \pm 0.15V$	$BV \pm 0.15V$	Units				
		Min	Max	Min	Max	Min	Max	
t _{PHL} , t _{PLH}	Propagation Delay In to On	0.8	3.0	1.0	3.4	1.5	6.8	ns
t _{PHL} , t _{PLH}	Propagation Delay LE to On	0.8	3.0	1.0	3.9	1.5	7.8	ns
t _{PZL} , t _{PZH}	Output Enable Time	0.8	3.5	1.0	4.6	1.5	9.2	ns
t _{PLZ} , t _{PHZ}	Output Disable Time	0.8	3.5	1.0	3.8	1.5	6.8	ns
t _S	Setup Time	1.5		1.5		2.5		ns
t _H	Hold Time	1.0		1.0		1.0		ns
tw	Pulse Width	1.5		1.5		4.0		ns


Dynamic Switching Characteristics


V_{cc} $T_A = +25^{\circ}C$ Symbol Parameter Conditions Units (V) Typical Quiet Output Dynamic Peak VOL V_{OLP} $C_L=30 \text{ pF}, \text{ } V_{IH}=V_{CC}, \text{ } V_{IL}=0 \text{ } V$ 0.25 1.8 2.5 0.6 V 3.3 0.8 V_{OLV} Quiet Output Dynamic Valley V_{OL} 1.8 2.5 -0.25 $C_L = 30 \text{ pF}, V_{IH}$ Vcc -0.6 V 3.3 -0.8 $C_{L} = 30 \text{ pF}, V_{IH} = V_{CC},$ V_{OHV} Quiet Output Dynamic Valley VOH 1.8 1.5 $V_{IL} = 0V$ 2.5 1.9 V 3.3 2.2

Capacitance

		Ť				
Symbol	Parameter	Conditions	$T_A = +25^{\circ}C$	Units		
Symbol		Conditions	Typical			
C _{IN}	Input Capacitance	V_{CC} = 1.8V, 2.5V or 3.3V, V_{I} = 0V or V_{CC}	6	pF		
C _{OUT}	Output Capacitance	$V_{I} = 0V \text{ or } V_{CC}, V_{CC} = 1.8V, 2.5V \text{ or } 3.3V$	7	pF		
C _{PD}	Power Dissipation Capacitance	$V_I = 0V \text{ or } V_{CC}, f = 10 \text{ MHz},$	20	pF		
		$V_{CC} = 1.8V$, 2.5V or 3.3V				

74VCX32373

