

April 1988 Revised August 1999

74F534

Octal D-Type Flip-Flop with 3-STATE Outputs

General Description

The 74F534 is a high speed, low-power octal D-type flipflop featuring separate D-type inputs for each flip-flop and 3-STATE outputs for bus-oriented applications. A buffered Clock (CP) and Output Enable $(\overline{\text{OE}})$ are common to all flipflops. The 74F534 is the same as the 74F374 except that the outputs are inverted.

Features

- Edge-triggered D-type inputs
- Buffered positive edge-triggered clock
- 3-STATE outputs for bus-oriented applications

3

Ordering Code:

Order Number	Package Number	Package Description
74F534SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
74F534SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74F534PC	N20A	20-Lead Plastic Dual-In-Line Package (PDIP) IEDEC MS-001_0 300 Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

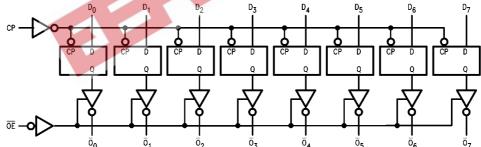
Logic Symbols

Connection Diagram

Unit Loading/Fan Out

Pin Names	December 1	U.L.	Input I _{IH} /I _{IL}		
	Description	HIGH/LOW	Output I _{OH} /I _{OL}		
D ₀ –D ₇	Data Inputs	1.0/1.0	20 μA/-0.6 mA		
CP	Clock Pulse Input (Active Rising Edge)	1.0/1.0	20 μA/-0.6 mA		
ŌE	3-STATE Output Enable Input (Active LOW)	1.0/1.0	20 μA/-0.6 mA		
$\overline{O}_0 - \overline{O}_7$	Complementary 3-STATE Outputs	150/40(33.3)	-3 mA/24 mA (20 mA)		

Function Table


	Inputs		Output
СР	OE	D	ō
~	L	Н	L
~	L	L	Н
L	L	X	\overline{O}_0
X	Н	Χ	Z

H = HIGH Voltage Level

Functional Description

The 74F534 consists of eight edge-triggered flip-flops with individual D-type inputs and 3-STATE complementary outputs. The buffered clock and buffered Output Enable are common to all flip-flops. The eight flip-flops will store the state of their individual D inputs that meet the setup and hold times requirements on the LOW-to-HIGH clock (CP) transition. With the Output Enable ($\overline{\text{OE}}$) LOW, the contents of the eight flip-flops are available at the outputs. When the $\overline{\text{OE}}$ is HIGH, the outputs go to the high impedance state. Operation of the $\overline{\text{OE}}$ input does not affect the state of the flip-flops.

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

L = LOW Voltage Level Z = High Impedance

X = Immaterial Z = I $\sim = LOW-to-HIGH Clock Transition$

 $[\]overline{O}_0$ = Value stored from previous clock cycle

Absolute Maximum Ratings(Note 1)

$_{-65^{\circ}\text{C to}}$ to $_{+150^{\circ}\text{C}}$ Conditions

 $\begin{tabular}{lll} Storage Temperature & -65^{\circ}C to +150^{\circ}C \\ Ambient Temperature under Bias & -55^{\circ}C to +125^{\circ}C \\ \end{tabular}$

Voltage Applied to Output in HIGH State (with $V_{CC} = 0V$)

 $\begin{array}{ll} \text{Standard Output} & -0.5 \text{V to V}_{\text{CC}} \\ \text{3-STATE Output} & -0.5 \text{V to } +5.5 \text{V} \end{array}$

Current Applied to Output

in LOW State (Max) twice the rated I_{OL} (mA) ESD Last Passing Voltage (Min) 4000V

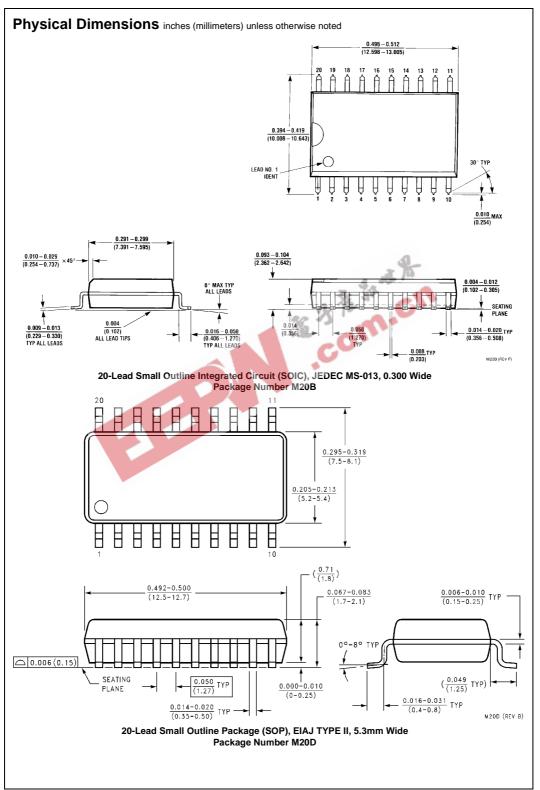
Free Air Ambient Temperature $0^{\circ}\text{C to } +70^{\circ}\text{C}$ Supply Voltage +4.5V to +5.5V

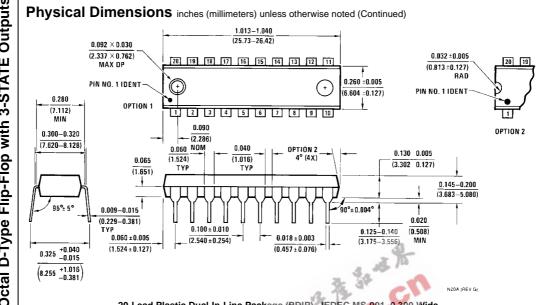
Recommended Operating

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

3

Note 2: Either voltage limit or current limit is sufficient to protect inputs.


DC Electrical Characteristics


Symbol	Parameter		Min	Тур	Max	Units	V _{CC}	Conditions	
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal	
V _{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal	
V _{CD}	Input Clamp Diode Voltage				=1.2	V	Min	I _{IN} = -18 mA	
V _{OH}	Output HIGH	10% V _{CC}	2.5		137			I _{OH} = -1 mA	
	Voltage	10% V _{CC}	2.4		-	V	Min	$I_{OH} = -3 \text{ mA}$	
		5% V _{CC}	2.7			V	IVIIII	$I_{OH} = -1 \text{ mA}$	
		5% V _{CC}	2.7					$I_{OH} = -3 \text{ mA}$	
V _{OL}	Output LOW Voltage	10% V _{CC}			0.5	V	Min	I _{OL} = 24 mA	
I _{IH}	Input HIGH Current				5.0	μΑ	Max	$V_{IN} = 2.7V$	
I _{BVI}	Input HIGH Current		7.0	μА	Max	V _{IN} = 7.0V			
	Breakdown Test				7.0	μА	IVIAX	V _{IN} = 7.0V	
I _{CEX}	Output HIGH	ut HIGH 50 μA Max				Max	V _{OUT} = V _{CC}		
	Leakage Current				30	μΛ	IVIAX	VOUT - VCC	
V _{ID}	Input Leakage		4.75			V	0.0	$I_{ID} = 1.9 \mu A$	
	Test		4.75			V	0.0	All Other Pins Grounded	
I _{OD}	Output Leakage				3.75	μА	0.0	$V_{IOD} = 1.50 \mu A$	
	Circuit Current				3.73	μΛ	0.0	All Other Pins Grounded	
I _{IL}	Input LOW Current				-0.6	mA	Max	$V_{IN} = 0.5V$	
I _{OZH}	Output Leakage Current				50	μΑ	Max	V _{OUT} = 2.7V	
I _{OZL}	Output Leakage Current				-50	μΑ	Max	V _{OUT} = 0.5V	
Ios	Output Short-Circuit Cur	rent	-60		-150	mA	Max	V _{OUT} = 0V	
I _{ZZ}	Bus Drainage Test				500	μΑ	0.0V	V _{OUT} = 5.25V	
I _{CCZ}	Power Supply Current			55	86	mA	Max	V _O = HIGH Z	

Symbol	Parameter	$T_A = +25^{\circ}C$ $V_{CC} = +5.0V$			$T_A = -55$ °C to +125°C $V_{CC} = +5.0V$		$T_A = 0$ °C to +70°C $V_{CC} = +5.0V$		Units
			$C_L = 50 \text{ pF}$		$C_L = 50 pF$		$C_L = 50 \text{ pF}$		01111
		Min	Тур	Max	Min	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency	100			60		70		N
t _{PLH}	Propagation Delay	4.0	6.5	8.5	4.0	10.5	4.0	10.0	
t_{PHL}	CP to \overline{O}_n	4.0	6.5	8.5	4.0	11.0	4.0	10.0	ns
t _{PZH}	Output Enable Time	2.0	9.0	11.5	2.0	14.0	2.0	12.5	
t_{PZL}		2.0	5.8	7.5	2.0	10.0	2.0	8.5	1 .
t _{PHZ}	Output Disable Time	1.5	5.3	7.0	1.5	8.0	1.5	8.0	
t _{PLZ}		1.5	4.3	5.5	1.5	7.5	1.5	6.5	

AC Operating Requirements

		T _A =	= +25°C	$T_A = -55^{\circ}C$	to +125°C	T _A = 0°C	to +70°C	
Symbol	Symbol Parameter		$V_{CC} = +5.0V$		$V_{CC} = +5.0 \text{V}$		$V_{CC} = +5.0V$	
		Min	Max	Min	Max	Min	Max	
t _S (H)	Setup Time, HIGH or LOW	2.0		2.0	T In	2.0		
$t_S(L)$	D _n to CP	2.0		2.5		2.0		ns
t _H (H)	Hold Time, HIGH or LOW	2.0	./9	2.0		2.0		115
t _H (L)	D _n to CP	2.0	20 %	2.5		2.0		
t _W (H)	CP Pulse Width	7.0	100	7.0	100	7.0		ns
$t_W(L)$	HIGH or LOW	6.0	1 440	6.0		6.0		115

20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Package Number N20A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the

2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com