April 2007

Quiet Series[™] Octal Transparent Latch with 3-STATE

Features

Outputs

■ I_{CC} and I_{OZ} reduced by 50%

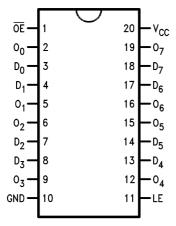
FAIRCHILD SEMICONDUCTOR

- Guaranteed simultaneous switching noise level and dynamic threshold performance
- Guaranteed pin-to-pin skew AC performance

74ACQ373, 74ACTQ373

- Improved latch up immunity
- Eight latches in a single package
- 3-STATE outputs drive bus lines or buffer memory address registers
- Outputs source/sink 24mA
- Faster prop delays than the standard AC/ACT373

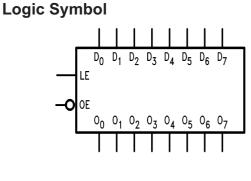
General Description

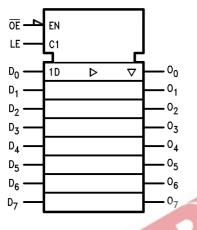

The ACQ/ACTQ373 consists of eight latches with 3-STATE outputs for bus organized system applications. The latches appear transparent to the data when Latch Enable (LE) is HIGH. When LE is LOW, the data satisfying the input timing requirements is latched. Data appears on the bus when the Output Enable (OE) is LOW. When OE is HIGH, the bus output is in the HIGH impedance state.

The ACQ/ACTQ373 utilizes Fairchild Quiet Series™ technology to guarantee quiet output switching and improve dynamic threshold performance. features GTO™ output control and undershoot corrector in addition to a split ground bus for superior performance.

Order Number	Package Number	Package Description
74ACQ373SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide Body
74ACQ373SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74ACTQ373SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide Body
74ACTQ373SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74ACQT373QSC	MQA20	20-Lead Quarter Size Outline Package (QSOP), JEDEC MO-137, 0.150" Wide

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering number.


Connection Diagram


Pin Descriptions

Pin Names	Description
D ₀ –D ₇	Data Inputs
LE	Latch Enable Input
ŌĒ	Output Enable Input
O ₀ –O ₇	3-STATE Latch Outputs

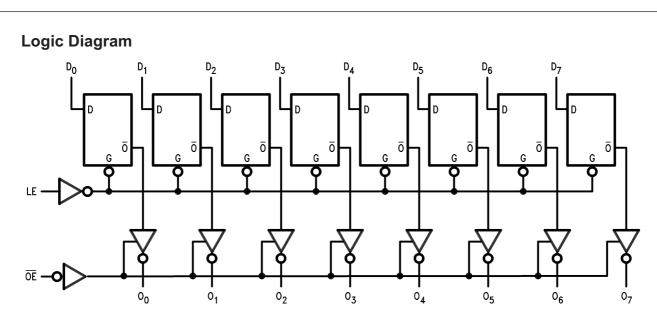
FACT™, Quiet Series™, FACT Quiet Series™, and GTO™ are trademarks of Fairchild Semiconductor Corporation.

Functional Description

The ACQ/ACTQ373 contains eight D-type latches with 3-STATE standard outputs. When the Latch Enable (LE) input is HIGH, data on the D_n inputs enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time its D input changes. When LE is LOW, the latches store the information that was present on the D inputs at setup time preceding the HIGH-to-LOW transition of LE. The 3-STATE standard outputs are controlled by the Output Enable (\overline{OE}) input. When \overline{OE} is LOW, the standard outputs are in the 2-state mode. When \overline{OE} is HIGH, the standard outputs are in the high impedance mode but this does not interfere with entering new data into the latches.

Truth Table

	Inputs		Outputs
LE	OE	D _n	O _n
X	e H	Х	Z
上下		L	L
X H	C L	Н	Н
EO	L	Х	O ₀


H = HIGH Voltage Level

L = LOW Voltage Level

Z = High Impedance

X = Immaterial

 ${\rm O}_0$ = Previous ${\rm O}_0$ before HIGH-to-LOW transition of Latch Enable

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	-0.5V to +7.0V
I _{IK}	DC Input Diode Current	
	$V_{I} = -0.5V$	–20mA
	$V_{I} = V_{CC} + 0.5V$	+20mA
VI	DC Input Voltage	–0.5V to V _{CC} + 0.5V
I _{OK}	DC Output Diode Current	
	$V_{O} = -0.5V$	–20mA
	$V_{O} = V_{CC} + 0.5V$	+20mA
Vo	DC Output Voltage	-0.5V to V _{CC} + 0.5V
Ι _Ο	DC Output Source or Sink Current	±50mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current per Output Pin	±50mA
T _{STG}	Storage Temperature	–65°C to +150°C
	DC Latch-Up Source or Sink Current	±300mA
TJ	Junction Temperature	140°C

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	
	ACQ	2.0V to 6.0V
	ACTQ	4.5V to 5.5V
VI	Input Voltage	0V to V _{CC}
Vo	Output Voltage	0V to V _{CC}
T _A	Operating Temperature	–40°C to +85°C
$\Delta V / \Delta t$	Minimum Input Edge Rate, ACQ Devices:	125mV/ns
	V_{IN} from 30% to 70% of $V_{\text{CC}}, V_{\text{CC}}$ @ 3.0V, 4.5V, 5.5V	
$\Delta V / \Delta t$	Minimum Input Edge Rate, ACTQ Devices:	125mV/ns
	V _{IN} from 0.8V to 2.0V, V _{CC} @ 4.5V, 5.5V	

				$T_A = -$	+25°C	T _A = -40°C to +85°C	
Symbol	Parameter	V _{CC} (V)	Conditions	Тур.	G	uaranteed Limits	Units
V _{IH}	Minimum HIGH Level	3.0	$V_{OUT} = 0.1V \text{ or}$	1.5	2.1	2.1	V
	Input Voltage	4.5	V _{CC} – 0.1V	2.25	3.15	3.15	1
		5.5		2.75	3.85	3.85	1
V _{IL}	Maximum LOW Level	3.0	$V_{OUT} = 0.1V \text{ or}$	1.5	0.9	0.9	V
	Input Voltage	4.5	V _{CC} – 0.1V	2.25	1.35	1.35	1
		5.5		2.75	1.65	1.65	
V _{OH}	Minimum HIGH Level	3.0	I _{OUT} = -50μA	2.99	2.9	2.9	V
	Output Voltage	4.5		4.49	4.4	4.4	
		5.5		5.49	5.4	5.4	
			$V_{IN} = V_{IL} \text{ or } V_{IH}$:				
		3.0	$I_{OH} = -12mA$		2.56	2.46	
		4.5	$I_{OH} = -24mA$		3.86	3.76	
		5.5	$I_{OH} = -24 m A^{(1)}$	4.	4.86	4.76	
V _{OL}	Maximum LOW Level	3.0	$I_{OUT} = 50 \mu A$	0.002	0.1	0.1	V
	Output Voltage	4.5	26 3	0.001	0.1	0.1]
		5.5	136	0.001	0.1	0.1]
			$V_{IN} = V_{IL}$ or V_{IH}				1
		3.0	I _{OL} = 12 mA		0.36	0.44	
		4.5	1 _{OL} = 24 mA		0.36	0.44	
		5.5	I _{OL} = 24 mA ⁽¹⁾		0.36	0.44	
I _{IN} ⁽³⁾	Maximum Input Leakage Current	5.5	$V_I = V_{CC}$, GND		±0.1	±1.0	μA
I _{OLD}	Minimum Dynamic	5.5	$V_{OLD} = 1.65V$ Max.			75	mA
I _{OHD}	Output Current ⁽²⁾	5.5	V _{OHD} = 3.85V Min.			-75	mA
I _{CC} ⁽³⁾	Maximum Quiescent Supply Current	5.5	$V_{IN} = V_{CC}$ or GND		4.0	40.0	μA
I _{OZ}	Maximum 3-STATE Leakage Current	5.5			±0.25	±2.5	μA
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	5.0	Figures 1 & 2 ⁽⁴⁾	1.1	1.5		V
V _{OLV}	Quiet Output Maximum Dynamic V _{OL}	5.0	Figures 1 & 2 ⁽⁴⁾	-0.6	-1.2		V
V _{IHD}	Minimum HIGH Level Dynamic Input Voltage	5.0	(5)	3.1	3.5		V
V _{ILD}	Maximum LOW Level Dynamic Input Voltage	5.0	(5)	1.9	1.5		V

Notes:

1. All outputs loaded; thresholds on input associated with output under test.

2. Maximum test duration 2.0ms, one output loaded at a time.

3. I_{IN} and I_{CC} @ 3.0V are guaranteed to be less than or equal to the respective limit @ 5.5V V_{CC}.

4. Max number of outputs defined as (n). Data inputs are driven 0V to 5V. One output @ GND.

5. Max number of data inputs (n) switching. (n–1) inputs switching 0V to 5V (ACQ). Input-under-test switching: 5V to threshold (V_{ILD}), 0V to threshold (V_{IHD}), f = 1MHz.

			T _A = +25°C		T _A = -40°C to +85°C	
Parameter	V_{CC} (V)	Conditions	Тур.	G	uaranteed Limits	Units
Minimum HIGH Level	4.5	$V_{OUT} = 0.1V \text{ or}$	1.5	2.0	2.0	V
Input Voltage	5.5	V _{CC} – 0.1V	1.5	2.0	2.0	1
Maximum LOW Level	4.5	$V_{OUT} = 0.1V \text{ or}$	1.5	0.8	0.8	V
Input Voltage	5.5	V _{CC} – 0.1V	1.5	0.8	0.8	
Minimum HIGH Level	4.5	Ι _{ΟUT} = –50μΑ	4.49	4.4	4.4	V
Output Voltage	5.5	•	5.49	5.4	5.4	
		$V_{IN} = V_{IL} \text{ or } V_{IH}$:				
	4.5	I _{OH} = -24mA		3.86	3.76	
	5.5	$I_{OH} = -24 m A^{(6)}$		4.86	4.76	
Maximum LOW Level	4.5	Ι _{ΟUT} = 50μΑ	0.001	0.1	0.1	V
Output Voltage	5.5		0.001	0.1	0.1	
		$V_{IN} = V_{IL} \text{ or } V_{IH}$:		4		
	4.5	I _{OL} = 24 mA	4.	0.36	0.44	
	5.5		X.S	0.36	0.44	
Maximum Input Leakage Current	5.5	$V_I = V_{CC}$, GND	1	±0.1	±1.0	μA
Maximum 3-STATE Leakage Current	5.5	$V_{I} = V_{IL}, V_{IH},$ $V_{O} = V_{CC}, GND$		±0.25	±2.5	μA
Maximum I _{CC} /Input	5.5	$V_{\rm I} = V_{\rm CC} - 2.1 V$	0.6		1.5	mA
Minimum Dynamic Output	5.5	V _{OLD} = 1.65V Max.			75	mA
Current ⁽⁷⁾	5.5	V _{OHD} = 3.85V Min.			-75	mA
Maximum Quiescent Supply Current	5.5	$V_{IN} = V_{CC}$, or GND		4.0	40.0	μA
Quiet Output Maximum Dynamic V _{OL}	5.0	Figures 1 & 2 ⁽⁸⁾	1.1	1.5		V
Quiet Output Minimum Dynamic V _{OL}	5.0	Figures 1 & 2 ⁽⁸⁾	-0.6	-1.2		V
Minimum HIGH Level Dynamic Input Voltage	5.0	(9)	1.9	2.2		V
Maximum LOW Level Dynamic Input Voltage	5.0	(9)	1.2	0.8		V
	Minimum HIGH Level Input Voltage Maximum LOW Level Input Voltage Minimum HIGH Level Output Voltage Maximum LOW Level Output Voltage Maximum Input Leakage Current Maximum Jour Leakage Current Maximum Jour Leakage Current Maximum I _{CC} /Input Minimum Dynamic Output Current ⁽⁷⁾ Maximum Quiescent Supply Current Quiet Output Maximum Dynamic V _{OL} Quiet Output Minimum Dynamic V _{OL} Minimum HIGH Level Dynamic Input Voltage Maximum LOW Level	Minimum HIGH Level Input Voltage4.5Maximum LOW Level Input Voltage4.5Maximum HIGH Level Output Voltage4.5Minimum HIGH Level Output Voltage4.5Maximum LOW Level Output Voltage4.5Maximum LOW Level Output Voltage4.5Maximum LOW Level Output Voltage4.5Maximum LOW Level Output Voltage5.5Maximum Input Leakage Current5.5Maximum 3-STATE Leakage Current5.5Maximum Unput Leakage Current5.5Maximum Quiescent Supply Current5.5Maximum Quiescent Supply Current5.5Maximum HIGH Level Dynamic V _{OL} 5.0Minimum HIGH Level Dynamic V _{OL} 5.0	Minimum HIGH Level Input Voltage4.5 5.5 $V_{OUT} = 0.1V \text{ or}$ $V_{CC} - 0.1V$ Maximum LOW Level Input Voltage4.5 5.5 $V_{OUT} = 0.1V \text{ or}$ $V_{CC} - 0.1V$ Minimum HIGH Level Output Voltage4.5 5.5 $I_{OUT} = -50\mu A$ Maximum LOW Level Output Voltage4.5 5.5 $I_{OUT} = -24mA$ Maximum LOW Level Output Voltage4.5 5.5 $I_{OH} = -24mA$ Maximum LOW Level Output Voltage4.5 5.5 $I_{OH} = -24mA^{(6)}$ Maximum Input Leakage Current5.5 $V_{IIN} = V_{IL} \text{ or } V_{IH}$ Maximum 3-STATE Leakage Current5.5 $V_I = 24 \text{ mA}^{(6)}$ Maximum Jopamic Output Current(7)5.5 $V_I = V_{CC}, \text{ GND}$ Maximum Quiescent Supply Current5.5 $V_{II} = V_{CC}, \text{ or GND}$ Maximum Quiescent Supply Current5.5 $V_{II} = V_{CC}, \text{ or GND}$ Quiet Output Maximum Dynamic V _{OL} 5.0Figures 1 & 2 ⁽⁸⁾ Minimum HIGH Level Dynamic Input Voltage5.0(9)Maximum LOW Level5.0(9)	$\begin{array}{ c c c c } \mbox{Parameter} & V_{CC} (V) & Conditions & Typ. \\ \begin{tabular}{ c c c } \hline Minimum HIGH Level \\ Input Voltage & 4.5 & V_{OUT} = 0.1V or \\ 1.5 & V_{CC} = 0.1V & 1.5 \\ \end{tabular} \\ $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

Notes:

6. All outputs loaded; thresholds on input associated with output under test.

7. Maximum test duration 2.0ms, one output loaded at a time.

8. Max number of outputs defined as (n). Data inputs are driven 0V to 3V. One output @ GND.

9. Max number of data inputs (n) switching. (n-1) inputs switching 0V to 3V (ACTQ). Input-under-test switching: 3V to threshold (V_{ILD}), 0V to threshold (V_{IHD}), f = 1 MHz.

					C, F	$T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C,$ $C_{L} = 50\text{ pF}$		
Symbol	Parameter	V _{CC} (V) ⁽¹⁰⁾	Min.	Тур.	Max.	Min.	Max.	Units
t _{PHL} , t _{PLH}	Propagation Delay,	3.3	2.5	8.0	10.5	2.5	11.0	ns
	D _n to O _n	5.0	1.5	5.5	7.0	1.5	7.5	
t _{PHL} , t _{PLH}	Propagation Delay, LE to O _n	3.3	2.5	8.0	12.0	2.5	12.5	ns
		5.0	2.0	6.0	8.0	2.0	8.5	
t _{PZL} , t _{PZH}	Output Enable Time	3.3	2.5	8.5	13.0	2.5	13.5	ns
		5.0	1.5	6.5	8.5	1.5	9.0	
t _{PHZ} , t _{PLZ}	Output Disable Time	3.3	1.0	9.0	14.5	1.0	15.0	ns
		5.0	1.0	6.5	9.5	1.0	10.0	
t _{OSHL} , t _{OSLH}	Output to Output Skew,	3.3		1.0	1.5		1.5	ns
	D_n to $O_n^{(11)}$	5.0		0.5	1.0		1.0	1

AC Electrical Characteristics for ACO

Note:

10. Voltage range 5.0 is 5.0V \pm 0.5V. Voltage range 3.3 is 3.3V \pm 0.3V.

AR 11. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}). Parameter guaranteed by design.

AC Operating Requirements for ACQ

			_	$ \begin{array}{c} T_{A} = +25^{\circ}C, \\ C_{L} = 50 pF \end{array} \qquad \begin{array}{c} T_{A} = -40^{\circ}C \ to \ +85^{\circ}C, \\ C_{L} = 50 \ pF \end{array} $		
Symbol	Parameter	V _{CC} (V) ⁽¹²⁾	Тур.	Gu	aranteed Minimum	Units
t _S	Setup Time, HIGH or LOW,	3.3	0	3.0	3.0	ns
	D _n to LE	5.0	0	3.0	3.0	
t _H	Hold Time, HIGH or LOW,	3.3	0	1.5	1.5	ns
	D _n to LE	5.0	0	1.5	1.5	
t _W	LE Pulse Width, HIGH	3.3	2.0	4.0	4.0	ns
		5.0	2.0	4.0	4.0	

Note:

12. Voltage range 5.0 is 5.0V \pm 0.5V. Voltage range 3.3 is 3.3V \pm 0.3V.

			T _A = +25°C, C _L = 50pF			$\label{eq:TA} \begin{split} T_A = -40^\circ C \ to \ +85^\circ C, \\ C_L = 50 pF \end{split}$		
Symbol	Parameter	V _{CC} (V) ⁽¹³⁾	Min.	Тур.	Max.	Min.	Max.	Units
t _{PHL} , t _{PLH}	Propagation Delay, D _n to O _n	5.0	2.0	6.5	7.5	2.0	8.0	ns
t _{PHL} , t _{PLH}	Propagation Delay, LE to O _n	5.0	2.5	7.0	8.5	2.5	9.0	ns
t _{PZL} , t _{PZH}	Output Enable Time	5.0	2.0	7.0	9.0	2.0	9.5	ns
t _{PHZ} , t _{PLZ}	Output Disable Time	5.0	1.0	8.0	10.0	1.0	10.5	ns
t _{OSHL} , t _{OSLH}	Output to Output Skew, D_n to $O_n^{(14)}$	5.0		0.5	1.0		1.0	ns

Notes:

13. Voltage range 5.0 is $5.0V \pm 0.5V$.

14. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}). Parameter guaranteed by design.

AC Operating Requirements for ACTQ

			T _A = +25°C, C _L = 50pF		$T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C,$ $C_{L} = 50 \text{ pF}$	
Symbol	Parameter	V _{CC} (V) ⁽¹⁵⁾	Тур.	Gu	aranteed Minimum	Units
t _S	Setup Time, HIGH or LOW, D _n to LE	5.0	0	3.0	3.0	ns
t _H	Hold Time, HIGH or LOW, D _n to LE	5.0	0	1.5	1.5	ns
t _W	LE Pulse Width, HIGH	5.0	2.0	4.0	4.0	ns

Note:

15. Voltage range 5.0 is 5.0V ± 0.5V

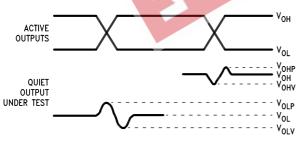
Capacitance

Symbol	Parameter	Conditions	Тур.	Units
C _{IN}	Input Capacitance	V _{CC} = OPEN	4.5	pF
C _{PD}	Power Dissipation Capacitance	$V_{CC} = 5.0V$	44.0	pF

FACT Noise Characteristics

The setup of a noise characteristics measurement is critical to the accuracy and repeatability of the tests. The following is a brief description of the setup used to measure the noise characteristics of FACT.

Equipment:


Hewlett Packard Model 8180A Word Generator

PC-163A Test Fixture

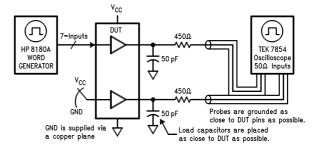
Tektronics Model 7854 Oscilloscope

Procedure:

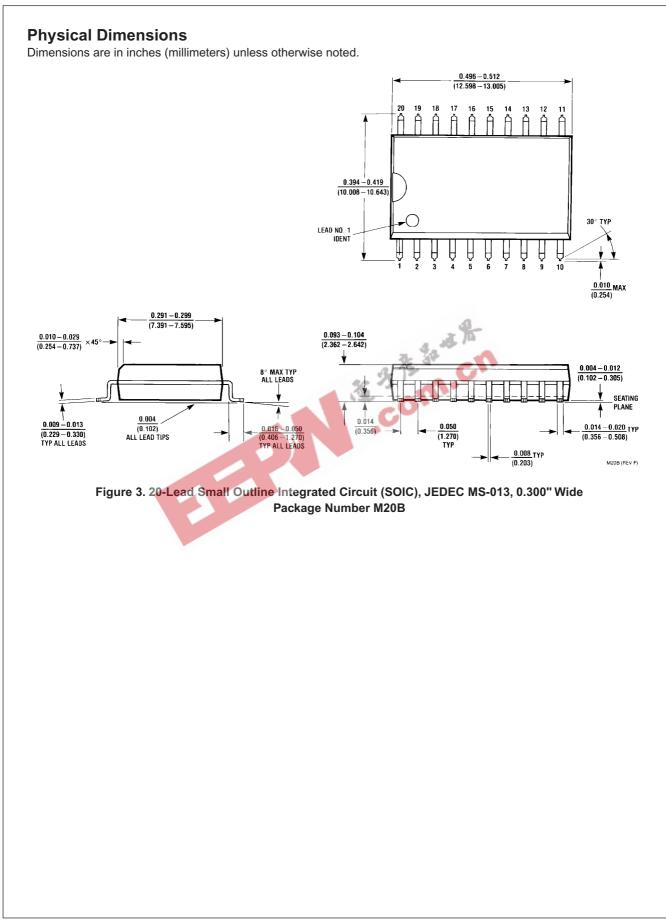
- Verify Test Fixture Loading: Standard Load 50pF, 500Ω.
- Deskew the HFS generator so that no two channels have greater than 150ps skew between them. This requires that the oscilloscope be deskewed first. It is important to deskew the HFS generator channels before testing. This will ensure that the outputs switch simultaneously.
- 3. Terminate all inputs and outputs to ensure proper loading of the outputs and that the input levels are at the correct voltage.
- Set the HFS generator to toggle all but one output at a frequency of 1MHz. Greater frequencies will increase DUT heating and effect the results of the measurement.
- Set the HFS generator input levels at 0V LOW and 3V HIGH for ACT devices and 0V LOW and 5V HIGH for AC devices. Verify levels with an oscilloscope.

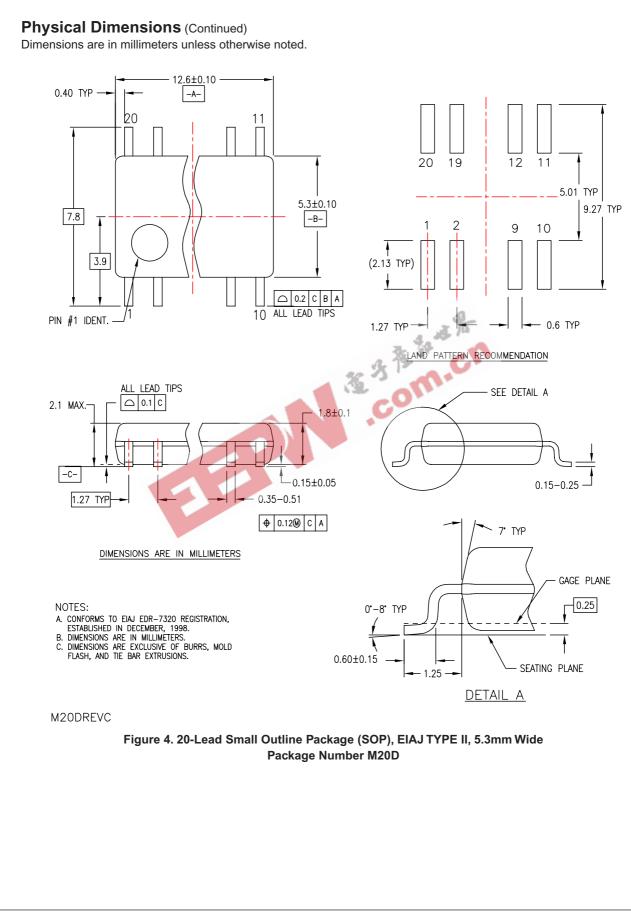
Notes:

- 16. V_{OHV} and V_{OLP} are measured with respect to ground reference.
- 17. Input pulses have the following characteristics: f = 1MHz, $t_r = 3ns$, $t_f = 3ns$, skew < 150ps.


Figure 1. Quiet Output Noise Voltage Waveforms

V_{OLP}/V_{OLV} and V_{OHP}/V_{OHV} :


- Determine the quiet output pin that demonstrates the greatest noise levels. The worst case pin will usually be the furthest from the ground pin. Monitor the output voltages using a 50Ω coaxial cable plugged into a standard SMB type connector on the test fixture. Do not use an active FET probe.
- Measure V_{OLP} and V_{OLV} on the quiet output during the worst case transition for active and enable. Measure V_{OHP} and V_{OHV} on the quiet output during the worst case active and enable transition.
- Verify that the GND reference recorded on the oscilloscope has not drifted to ensure the accuracy and repeatability of the measurements.


V_{ILD} and V_{IHD}:

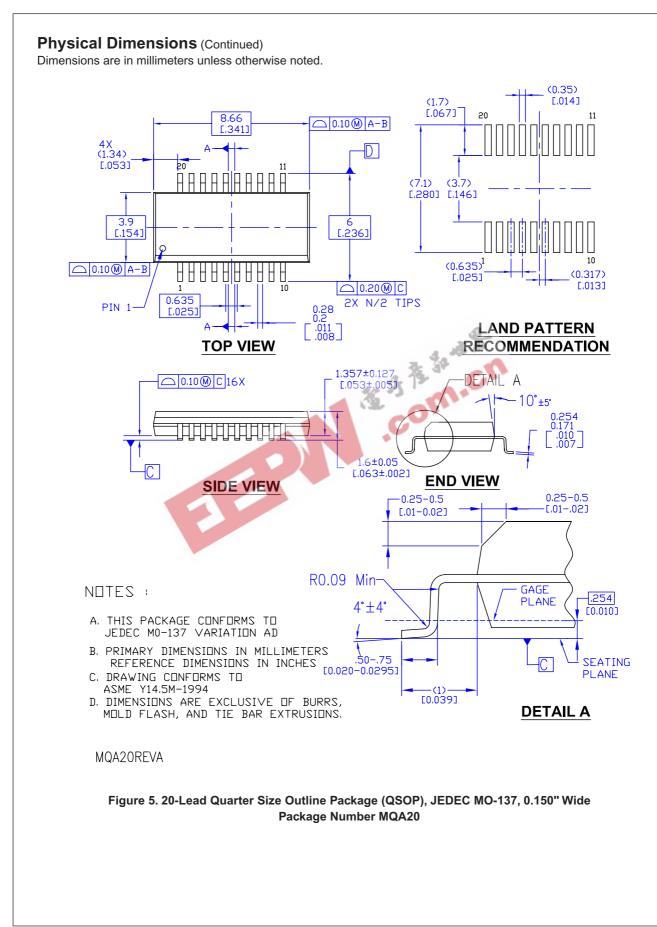

- Monitor one of the switching outputs using a 50Ω coaxial cable plugged into a standard SMB type connector on the test fixture. Do not use an active FET probe.
- First increase the input LOW voltage level, V_{IL}, until the output begins to oscillate or steps out a min of 2ns.
- Oscillation is defined as noise on the output LOW level that exceeds V_{IL} limits, or on output HIGH levels that exceed V_{IH} limits. The input LOW voltage level at which oscillation occurs is defined as V_{ILD}.
- Next decrease the input HIGH voltage level, V_{IH} until the output begins to oscillate or steps out a min of 2ns. Oscillation is defined as noise on the output LOW level that exceeds V_{IL} limits, or on output HIGH levels that exceed V_{IH} limits. The input HIGH voltage level at which oscillation occurs is defined as V_{IHD}.
- Verify that the GND reference recorded on the oscilloscope has not drifted to ensure the accuracy and repeatability of the measurements.

Figure 2. Simultaneous Switching Test Circuit

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx [®] Across the board. Around the world. TM ActiveArray TM Bottomless TM Build it Now TM CoolFET TM $CROSSVOLT^{TM}$ CTL TM Current Transfer Logic TM DOME TM E ² CMOS TM EcoSPARK [®] EnSigna TM FACT Quiet Series TM FACT [®] FAST [®] FAST [®] FAST TM FRFET [®] GlobalOptoisolator TM	HiSeC TM <i>i</i> -Lo TM ImpliedDisconnect TM IntelliMAX TM ISOPLANAR TM MICROCOUPLER TM MICROWIRE TM MSX TM MSXPro TM OCX TM OCXPro TM OCXPro TM OPTOLOGIC [®] OPTOPLANAR [®] PACMAN TM POP TM Power220 [®] Power247 [®] PowerEdge TM PowerEdge TM	Programmable Active Droop™ QFET [®] QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ RapidConnect™ ScalarPump™ SMART START™ SMART START™ SPM [®] STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-6 SuperSOT™-8 SyncFET™ TCM™ The Power Franchise®	TinyLogic [®] TINYOPTO™ TinyPower™ TruTranslation™ µSerDes™ UHC [®] UniFET™ VCX™ Wire™
FRFET [®] GlobalOptoisolator™ GTO™		™ TinyBoost™ TinyBuck™	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition	
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.	
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.	
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.	
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.	