FAIRCHILD

SEMICONDUCTOR

74LVX574 Low Voltage Octal D-Type Flip-Flop with 3-STATE Outputs

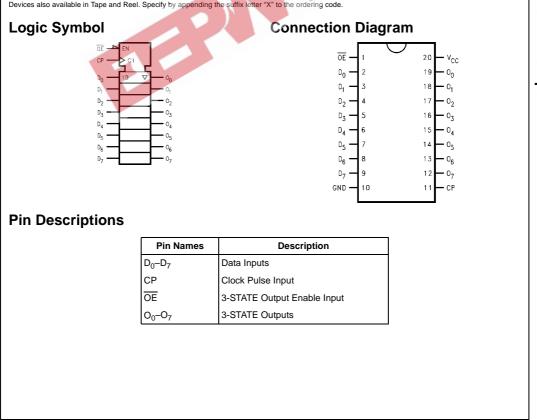
General Description

The LVX574 is a high-speed octal D-type flip-flop which is controlled by an edge-triggered clock input (CP) and a buffered common Output Enable (\overline{OE}) input. When the \overline{OE} input is HIGH, the eight outputs are in a high impedance state. The LVX574 is functionally identical to the LVX374 but with inputs and outputs on opposite sides of the package. The inputs tolerate up to 7V allowing interface of 5V systems to 3V systems.

Features

■ Input voltage translation from 5V to 3V

76 3


■ Ideal for low power/low noise 3.3V applications

2.1

Guaranteed simultaneous switching noise level and dynamic threshold performance

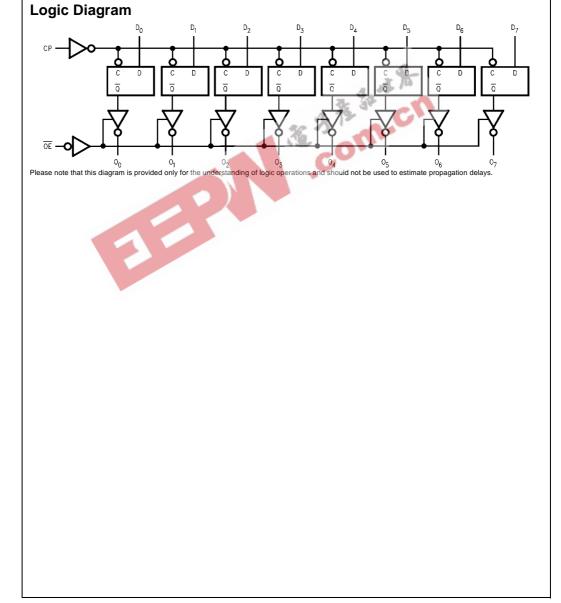
Ordering Code:

Order Number	Package Number	Package Description						
74LVX574M	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide						
74LVX574SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide						
74LVX574MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide						
Devices also available	Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.							

www.fairchildsemi.com

June 1993 Revised March 1999

Functional Description


The LVX574 consists of eight edge-triggered flip-flops with individual D-type inputs and 3-STATE true outputs. The buffered clock and buffered Output Enable are common to all flip-flops. The eight flip-flops will store the state of their individual D inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock (CP) transition. With the Output Enable (\overline{OE}) LOW, the contents of the eight flip-flops are available at the outputs. When the $\overline{\text{OE}}$ is HIGH, the outputs go to the high impedance state. Operation of the $\overline{\text{OE}}$ input does not affect the state of the flipflops.

Truth Table

	Outputs		
D _n	СР	OE	O _n
Н	~	L	Н
L	~	L	L
Х	х	н	Z

H = HIGH Voltage Level L = LOW Voltage Level

 $\begin{array}{l} X = \text{Immaterial} \\ Z = \text{High Impedance} \\ \hline{} = \text{LOW-to-HIGH Transition} \end{array}$

www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC}) DC Input Diode Current (I _{IK})	-0.5V to +7.0V
$V_{\rm I} = -0.5 V$	–20 mA
DC Input Voltage (VI)	-0.5V to 7V
DC Output Diode Current (I _{OK})	
$V_{O} = -0.5V$	–20 mA
$V_O = V_{CC} + 0.5V$	+20 mA
DC Output Voltage (V _O)	$-0.5 V$ to $V_{CC} + 0.5 V$
DC Output Source	
or Sink Current (I _O)	±25 mA
DC V _{CC} or Ground Current	
(I _{CC} or I _{GND})	±75 mA
Storage Temperature (T _{STG})	-65°C to +150°C
Power Dissipation	180 mW

Recommended Operating Conditions (Note 2)

Supply Voltage (V _{CC})	2.0V to 3.6V
Input Voltage (V _I)	0V to 5.5V
Output Voltage (V _O)	0V to V _{CC}
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Input Rise and Fall Time ($\Delta t/\Delta V$)	0 ns/V to 100 ns/V

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation. for actual device operation.

Note 2: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	Vcc	T _A = +25°C			$T_A = -40^{\circ}C$ to $+85^{\circ}C$		Units	Conditions	
	Faranteter	V CC	Min	Тур	Max	Min	Max	Units	Condi	10115
VIH	HIGH Level	2.0	1.5			1.5	1			
	Input Voltage	3.0	2.0		- 3	2.0		V		
		3.6	2.4			2.4	0.			
V _{IL}	LOW Level	2.0			0.5	0	0.5			
	Input Voltage	3.0		S	0.8		0.8	V		
		3.6			0.8		0.8			
V _{OH}	HIGH Level	2.0	1.9	2.0	-	1.9			$V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OH} = -50 \ \mu A$
	Output Voltage	3.0	2.9	3.0		2.9		V		$I_{OH} = -50 \ \mu A$
		3.0	2.58			2.48				$I_{OH} = -4 \text{ mA}$
V _{OL}	LOW Level	2.0		0.0	0.1		0.1		$V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OL}=50\;\mu A$
	Output Voltage	3.0		0.0	0.1		0.1	V		$I_{OL}=50~\mu A$
		3.0			0.36		0.44			$I_{OL} = 4 \text{ mA}$
l _{oz}	3-STATE Output	3.6			±0.25		±2.5	μA	$V_{IN} = V_{IH} \text{ or } V_{IL}$	
	Off-State Current								$V_{OUT} = V_{CC}$ or G	ND
I _{IN}	Input Leakage Current	3.6			±0.1		±1.0	μA	$V_{IN} = 5.5V \text{ or } GN$	ID
I _{CC}	Quiescent Supply Current	3.6			4.0		40.0	μA	$V_{IN} = V_{CC}$ or GN	D

Noise Characteristics (Note 3)

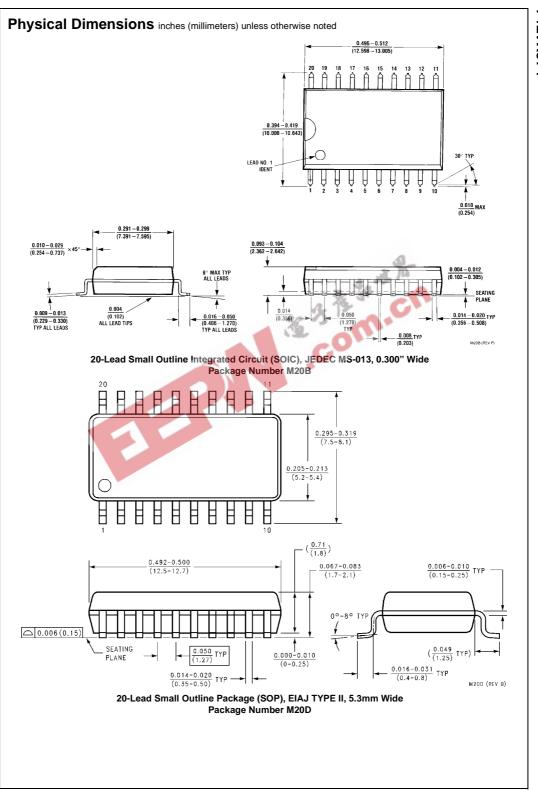
Symbol	Parameter	V _{cc}	$T_A = 25^{\circ}C$		Units	С ₁ (рF)	
	i arameter	(V)	Тур	Limit	onno	- [(+-)	
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	3.3	0.5	0.8	V	50	
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	3.3	-0.5	-0.8	V	50	
V _{IHD}	Minimum HIGH Level Dynamic Input Voltage	3.3		2.0	V	50	
V _{ILD}	Maximum LOW Level Dynamic Input Voltage	3.3		0.8	V	50	

Note 3: (Input $t_r = t_f = 3 \text{ ns}$)

www.fairchildsemi.com

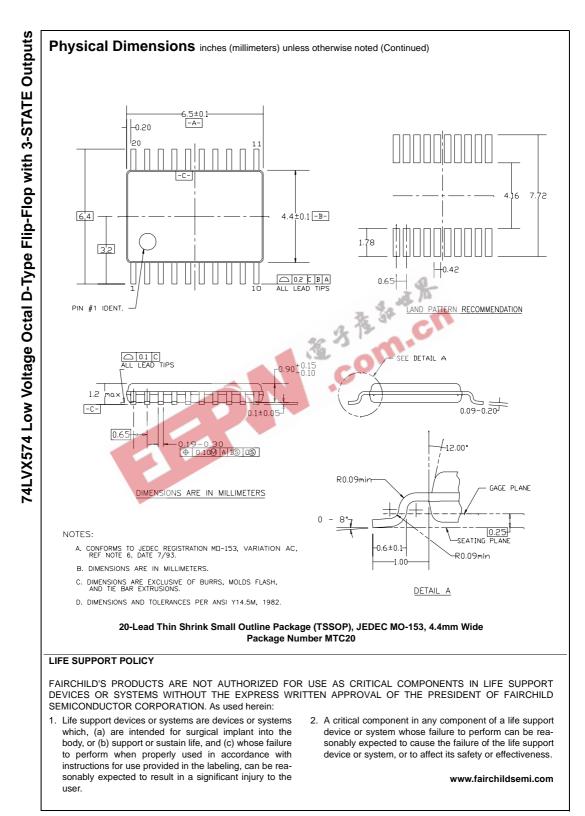
74LVX574

AC Electrical Characteristics (Note 4)


Symbol	Parameter	V _{CC}	T _A = +25°C			$T_A = -40^{\circ}C$ to $+85^{\circ}C$		Units	Conditions
0,11001	Falanetei	(V)	Min	Тур	Max	Min	Max	Units	Conditions
f _{MAX}	Maximum	2.7	60	115		50			C _L = 15 pF
	Clock		45	60		40		MHZ	$C_L = 50 \text{ pF}$
	Frequency	$\textbf{3.3}\pm\textbf{0.3}$	80	125		65		IVITZ	$C_L = 15 \text{ pF}$
			50	75		45			$C_L = 50 \text{ pF}$
^t PLH	Propagation	2.7		9.2	14.5	1.0	17.5		C _L = 15 pF
t _{PHL}	Delay Time			11.5	18.0	1.0	21.0	ns	$C_L = 50 \text{ pF}$
	CP to O _n	$\textbf{3.3}\pm\textbf{0.3}$		8.5	13.2	1.0	15.5	ns	$C_L = 15 \text{ pF}$
				11.0	16.7	1.0	19.0		$C_L = 50 \text{ pF}$
t _{PZL}	3-STATE Output	2.7		9.8	15.0	1.0	18.5		$C_L = 15 \text{ pF}, R_L = 1 \text{ k}\Omega$
t _{PZH}	Enable Time			11.4	18.5	1.0	22.0	ns	$C_L = 50 \text{ pF}, \text{ R}_L = 1 \text{ k}\Omega$
		$\textbf{3.3}\pm\textbf{0.3}$		8.2	12.8	1.0	15.0	115	$C_L = 15 \text{ pF}, R_L = 1 \text{ k}\Omega$
				10.7	16.3	1.0	18.5		$C_L = 50 \text{ pF}, \text{ R}_L = 1 \text{ k}\Omega$
t _{PLZ}	3-STATE Output	2.7		12.1	19.1	1.0	22.0	ns	$C_L = 50 \text{ pF}, \text{ R}_L = 1 \text{ k}\Omega$
t _{PHZ}	Disable Time	$\textbf{3.3}\pm\textbf{0.3}$		11.0	15.0	1.0	17.0	115	$C_L = 50 \text{ pF}, R_L = 1 \text{ k}\Omega$
t _W	CP Pulse	2.7	6.5			7.5	6	1	
	Width	$\textbf{3.3}\pm\textbf{0.3}$	5.0			5.0	1	ns	
t _S	Setup Time	2.7	5.0			5.0	La.	-	
	D _n to CP	$\textbf{3.3}\pm\textbf{0.3}$	3.5			3.5	QT.	ns	
t _H	Hold Time	2.7	1.5			1.5			
	D _n to CP	$\textbf{3.3}\pm\textbf{0.3}$	1.5		1.50	1.5		ns	
t _{OSHL}	Output to Output	2.7			1.5	-0	1.5	-	$C_L = 50 \text{ pF}$
toslh	Skew (Note 4)	3.3			1.5	50	1.5	ns	

Capacitance

Symbol	Parameter		$T_A = +25^{\circ}C$		$T_A = -40^\circ$	Units	
		Min	Тур	Max	Min	Max	onits
CIN	Input Capacitance		4	10		10	pF
C _{OUT}	Output Capacitance		6				pF
C _{PD}	Power Dissipation		27				pF
	Capacitance (Note 5)						


Note 5: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation: $I_{CC(opr.)} = \frac{C_{PD} \times V_{CC} \times f_{IN} + I_{CC}}{8 \text{ (per latch)}}$

74LVX574

www.fairchildsemi.com

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.