

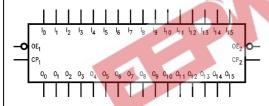
August 1999 Revised October 1999

74ACT16374 16-Bit D-Type Flip-Flop with 3-STATE Outputs

General Description

The ACT16374 contains sixteen non-inverting D-type flipflops with 3-STATE outputs and is intended for bus oriented applications. The device is byte controlled. A buffered clock (CP) and Output Enable (OE) are common to each byte and can be shorted together for full 16-bit operation.

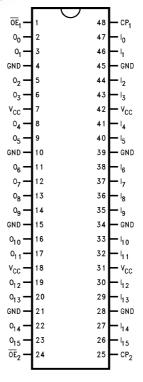
Features


- Buffered Positive edge-triggered clock
- Separate control logic for each byte
- 16-bit version of the ACT374
- Outputs source/sink 24 mA
- TTL-compatible inputs

Ordering Code:

Order Number	Package Number	Package Description					
74ACT16374SSC	MS48A	48-Lead Small Shrink Outline Package (SSOP), JEDEC MO-118, 0.300" Wide					
74ACT16374MTD	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide					

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code


Logic Symbol

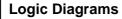
Pin Descriptions

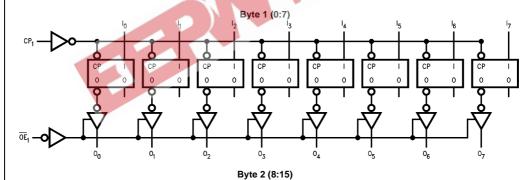
Pin Names	Description				
\overline{OE}_n	Output Enable Input (Active LOW)				
CP _n	Clock Pulse Input				
I ₀ -I ₁₅	Inputs				
O ₀ -O ₁₅	Outputs				

Connection Diagram

FACT™ is a trademark of Fairchild Semiconductor Corporation.

Functional Description


The ACT16374 consists of sixteen edge-triggered flip-flops with individual D-type inputs and 3-STATE true outputs. The device is byte controlled with each byte functioning identically, but independent of the other. The control pins can be shorted together to obtain full 16-bit operation. Each byte has a buffered clock and buffered Output Enable common to all flip-flops within that byte. The description which follows applies to each byte. Each flip-flop will store the state of their individual D inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock (CPn) transition. With the Output Enable $(\overline{\text{OE}}_n)$ LOW, the contents of the flip-flops are available at the outputs. When $\overline{\text{OE}}_n$ is HIGH, the outputs go to the high impedance state. Operation of the OE_n input does not affect the state of the


Truth Tables

	Inputs		Outputs
CP ₁	OE ₁	I ₀ –I ₇	O ₀ -O ₇
~	L	Н	Н
~	L	L	L
L	L	Χ	(Previous)
Х	Н	Χ	Z

	Inputs	Outputs	
CP ₂	OE ₂	I ₈ -I ₁₅	O ₈ -O ₁₅
~	L	Н	Н
~	L	L	L
L	L	Χ	(Previous)
Х	Н	Х	Z

- H = HIGH Voltage Level
- L = LOW Voltage Level
- X= Immaterial
 Z = HIGH Impedance
 _ = LOW-to-HIGH Transition

Absolute Maximum Ratings(Note 1)

Supply Voltage (V_{CC}) DC Input Diode Current (I_{IK}) -0.5V to +7.0V

 $V_{I} = -0.5V$

-20 mA $V_I = V_{CC} + 0.5V$ +20 mA

DC Output Diode Current (IOK)

 $V_O = -0.5V$ -20 mA $V_O = V_{CC} + 0.5V$ +20 mA

DC Output Voltage (V_O) $-0.5\mbox{V}$ to $\mbox{V}_{CC} + 0.5\mbox{V}$

DC Output Source/Sink Current (I_O) DC V_{CC} or Ground Current

per Output Pin ± 50 mA Storage Temperature -65°C to +150°C

Recommended Operating Conditions

Supply Voltage (V_{CC}) 4.5V to 5.5V Input Voltage (V_I) 0V to V_{CC} Output Voltage (V_O) 0V to $V_{\mbox{\footnotesize CC}}$ -40°C to +85°C Operating Temperature (T_A) Minimum Input Edge Rate ($\Delta V/\Delta t$) 125 mV/ns

 V_{IN} from 0.8V to 2.0V V_{CC} @ 4.5V, 5.5V

±50 mA Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation of FACT™ circuits outside databook specifications.

DC Electrical Characteristics

Symbol	Parameter	V_{CC} $T_A = +25^{\circ}C$		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	Units	Conditions		
Зушьог	rarameter	(V)	Тур	Typ Guaranteed Limits		Units	Conditions	
V _{IH}	Minimum HIGH	4.5	1.5	2.0	2.0	V	V _{OUT} = 0.1V	
	Input Voltage	5.5	1.5	2.0	2.0		or V _{CC} – 0.1V	
V _{IL}	Maximum LOW	4.5	1.5	0.8	0.8	V	V _{OUT} = 0.1V	
	Input Voltage	5.5	1.5	0.8	0.8	V	or V _{CC} – 0.1V	
V _{OH}	Minimum HIGH	4.5	4.49	4.4	4.4	V	I _{OUT} = -50 μA	
	Output Voltage	5.5	5.49	5.4	5.4	· v	1 _{OUT} = -30 μA	
			·				$V_{IN} = V_{IL}$ or V_{IH}	
		4.5	1/1	3.86	3.76	V	$I_{OH} = -24 \text{ mA}$	
		5.5		4.86	4.76		I _{OH} = -24 mA (Note 2)	
V _{OL}	Maximum LOW	4.5	0.001	0.1	0.1	V	I _{OUT} = 50 μA	
	Output Voltage	5. 5	0.001	0.1	0.1	· ·	1001 = 30 μΑ	
							$V_{IN} = V_{IL}$ or V_{IH}	
		4.5		0.36	0.44	V	$I_{OL} = 24 \text{ mA}$	
		5.5		0.36	0.44		I _{OL} = 24 mA (Note 2)	
I _{OZ}	Maximum 3-STATE	5.5		± 0.5	± 5.0	μА	$V_I = V_{IL}, V_{IH}$	
	Leakage Current	5.5		± 0.5	± 5.0	μΑ	$V_O = V_{CC}$, GND	
I _{IN}	Maximum Input	5.5		± 0.1	± 1.0	μА	$V_I = V_{CC}$, GND	
	Leakage Current	0.0		2 0.1	11.0	μι	V1 = VCC, OND	
I _{CCT}	Maximum I _{CC} /Input	5.5	0.6		1.5	mA	$V_I = V_{CC} - 2.1V$	
I _{CC}	Maximum Quiescent			8.0	80.0	μА	V _{IN} = V _{CC} or GND	
	Supply Current	5.5		0.0	55.0	μΛ	AIN = ACC OL GIAD	
I _{OLD}	Minimum Dynamic	5.5			75	mA	V _{OLD} = 1.65V Max	
I _{OHD}	Output Current (Note 3)	0.0			-75	mA	V _{OHD} = 3.85V Min	

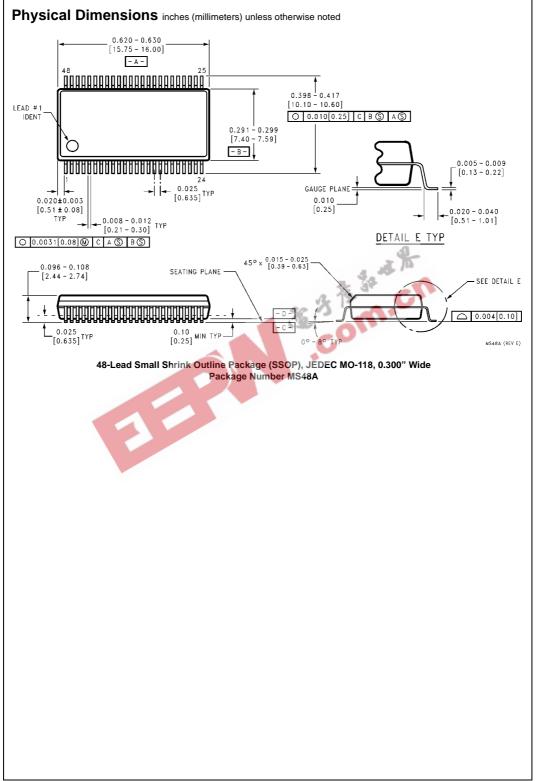
Note 2: All outputs loaded; thresholds associated with output under test.

Note 3: Maximum test duration 2.0 ms; one output loaded at a time.

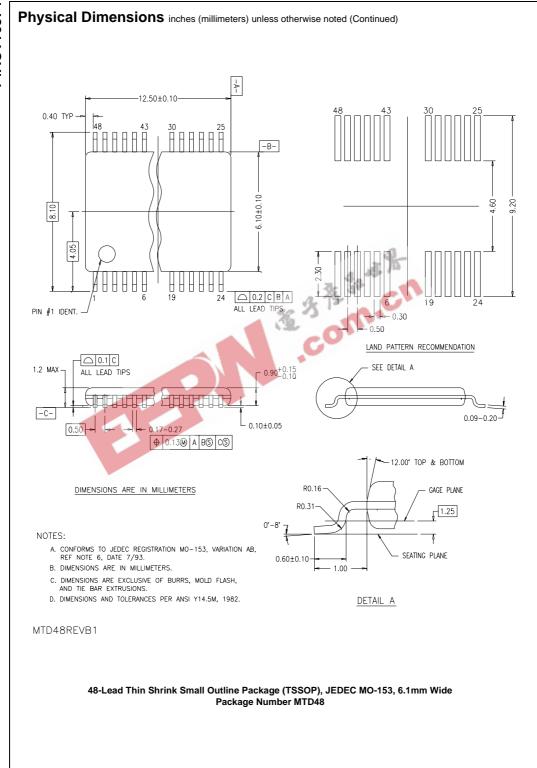
AC Electrical Characteristics

		V _{CC}	T _A = +25°C C _L = 50 pF			$T_A = -40$ °C to +85°C $C_L = 50$ pF		Units
Symbol	Parameter	(V)						
		(Note 4)	Min	Тур	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency	5.0	71			67		MHz
t _{PLH}	Propagation Delay	5.0	3.1	5.3	7.9	3.1	8.4	ns
t _{PHL}	CP to O _n	3.0	3.0	5.1	7.3	3.0	7.8	115
t _{PZH}	Output Enable Time	5.0	2.5	4.7	7.4	2.5	7.9	ns
t_{PZL}		3.0	3.0	5.4	8.0	2.0	8.5	115
t _{PHZ}	Output Disable Time	5.0	2.1	5.1	7.9	2.1	8.2	ns
t_{PLZ}		3.0	2.0	4.8	7.4	2.0	7.9	115

Note 4: Voltage Range 5.0 is $5.0V \pm 0.5V$.


AC Operating Requirements

Symbol	Parameter	V _{CC} (V)	$T_A = +25^{\circ}C$ $C_L = 50 \text{ pF}$		$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$ $C_L = 50 \text{ pF}$	Units
		(Note 5)	Тур	Gua	ranteed Limits	
t _S	Setup Time, HIGH or LOW, Input to Clock	5.0	0.7	3.0	3.0	ns
t _H	Hold Time, HIGH or LOW, Input to Clock	5.0	0.8	1.0	1.0	ns
t _W	CP Pulse Width, HIGH or LOW	5.0	1.5	5.0	5.0	ns


Note 5: Voltage Range 5.0 is $5.0V \pm 0.5V$.

Capacitance

Symbol	Parameter	Тур	Units	Conditions
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = 5.0V
C _{PD}	Power Dissipation Capacitance	30	pF	V _{CC} = 5.0V

5

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

7

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com