

74F657

	Description	U.L.	Input I _{IH} /I _{IL}		
Pin Names	Description	HIGH/LOW	Output I _{OH} /I _{OL}		
A ₀ -A ₇	Data Inputs/	4.5/0.15	90 μA/– 90 μA		
	3-STATE Outputs	150/40 (33.3)	–3 mA/24 mA (20 mA)		
B ₀ -B ₇	Data Inputs/	3.5/0.117	70 μA/–70 μA		
	3-STATE Outputs	600/106.6 (80)	–12 mA/64 mA (48 mA)		
T/R	Transmit/Receive Input	2.0/0.067	40 μA/–40 μA		
OE	Enable Input	2.0/0.067	40 μA/–40 μA		
PARITY	Parity Input/	3.5/0.117	70 μΑ/–70μΑ		
	3-STATE Output	600/106.6 (80)	–12 mA/64 mA (48 mA)		
ODD/EVEN	ODD/EVEN Parity Input	1.0/0.033	20 μA/–20 μA		
ERROR	Error Output	600/106.6 (80)	–12 mA/64 mA (48 mA)		

Functional Description

Unit Loading/Fan Out

The Transmit/Receive (T/\overline{R}) input determines the direction of the data flow through the bidirectional transceivers. Transmit (active HIGH) enables data from the A Port to the B Port; Receive (active LOW) enables data from the B Port to the A Port.

<u>The Output</u> Enable (\overline{OE}) input disables the parity and ERROR outputs and both the A and B Ports by placing them in a HIGH-Z condition when the Output Enable input is HIGH.

When transmitting (T/ \overline{R} HIGH), the parity generator detects whether an even or odd number of bits on the A Port are HIGH and compares these with the condition of the parity

Function Table

Number of		Inpu	its	Output	Out	puts
are HIGH	OE	T/R	ODD/ EVEN	Parity	ERROR	Outputs Mode
0, 2, 4, 6, 8	L	Н	Н	Н	Z	Transmit
	L	н	L	L	Z	Transmit
	L	L	н	н	н	Receive
	L	L	н	L	L	Receive
	L	L	L	н	L	Receive
	L	L	L	L	н	Receive
1, 3, 5, 7	L	Н	Н	L	Z	Transmit
	L	н	L	н	Z	Transmit
	L	L	н	н	L	Receive
	L	L	н	L	н	Receive
	L	L	L	н	н	Receive
	L	L	L	L	L	Receive
Immaterial	Н	Х	Х	Z	Z	Z

L = LOW Voltage Level

X = Immaterial

Z = High Impedance

select (ODD/EVEN). If the Parity Select is HIGH and an even number of A inputs are HIGH, the Parity output is HIGH.

In receiving mode (T/R LOW), the parity select and number of HIGH inputs on port B are compared to the condition of the Parity input. If an even number of bits on the B Port are HIGH, the parity select is HIGH, and the PARITY input is HIGH, then ERROR will be HIGH to indicate no error. If an odd number of bits on the B Port are HIGH, the parity select is HIGH, and the PARITY input is HIGH, the ERROR will be LOW indicating an error.

Function Table

Inj	outs	Outputo				
OE	T/R	Outputs				
L	L	Bus B Data to Bus A				
L	н	Bus A Data to Bus B				
н	Х	High-Z State				
H = HIGH Voltage	Level					

L = LOW Voltage Level X = Immaterial

74F657

Absolute Maximum Ratings(Note 1)

Storage Temperature	$-65^{\circ}C$ to $+150^{\circ}C$
Ambient Temperature under Bias	-55°C to +125°C
Junction Temperature under Bias	$-55^{\circ}C$ to $+150^{\circ}C$
V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to +7.0V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Output	
in HIGH State (with $V_{CC} = 0V$)	
Standard Output	–0.5V to V_{CC}
3-STATE Output	-0.5V to +5.5V
Current Applied to Output	
in LOW State (Max)	twice the rated I_{OL} (mA)

Recommended Operating Conditions

Free	Air Ambient	Temperature
Suppl	y Voltage	

0°C to +70°C +4.5V to +5.5V

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter		Min	Тур	Max	Units	Vcc	Conditions
V _{IH}	Input HIGH Voltage		2.0			V	J. /	Recognized as a HIGH Signal
VIL	Input LOW Voltage				0.8	V	9	Recognized as a LOW Signal
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	$I_{IN} = -18 \text{ mA}$
V _{OH}	Output HIGH 10%	V _{CC}	2.5		30 1		A.**	$I_{OH} = -1 \text{ mA } (A_n)$
	Voltage 10%	V _{CC}	2.4		32			$I_{OH} = -3 \text{ mA} (A_n B_n, \text{ Parity}, \overline{\text{ERROR}})$
	10%	V _{CC}	2.0			V	Min	$I_{OH} = -15 \text{ mA} (B_n, \text{ Parity}, \overline{\text{ERROR}})$
	5%	V _{CC}	2.7					$I_{OH} = -1 \text{ mA} (A_n)$
	5%	Vcc	2.7					$I_{OH} = -3 \text{ mA} (A_n, B_n, \text{ Parity}, \overline{\text{ERROR}})$
V _{OL}	Output LOW 10%	Vcc			0.5	V	Min	$I_{OL} = 24 \text{ mA} (A_n)$
	Voltage 10%	V _{CC}			0.55	v	IVIIII	$I_{OL} = 64 \text{ mA} (B_n \text{ Parity}, \overline{\text{ERROR}})$
IIH	Input HIGH				20			$V_{IN} = 2.7V (ODD/\overline{EVEN})$
	Current				40	μΑ	Max	V _{IN} 2.7V (T/R, OE)
I _{BVI}	Input HIGH Current				100			
	Breakdown Test				100	μΑ	$V_{CC} = 0$	$v_{IN} = 7.0V (I/R, OE, ODD/EVEN)$
I _{BVIT}	Input HIGH Current				1.0		Ман	V _{IN} = 5.5V (Parity, B _n)
	Breakdown Test (I/O)				2.0	mA	wax	$V_{IN} = 5.5V (A_n)$
Ι _{ΙL}	Input LOW				-20			$V_{IN} = 0.5V (ODD/\overline{EVEN})$
	Current				-40	μΑ	Max	$V_{IN} = 0.5V (T/\overline{R}, \overline{OE})$
I _{OZH}	Output Leakage Current				50	μΑ	Max	$V_{OUT} = 2.7V (\overline{ERROR})$
I _{OZL}	Output Leakage Current				-50	μA	Max	V _{OUT} = 0.5V (ERROR)
I _{IH} + I _{OZH}	Output Leakage				70	ıιΔ	Max	V _{I/O} = 2.7V (B _n , Parity)
	Current				90	μΛ	Max	$V_{I/O} = 2.7V (A_n)$
I _{IL} + I _{OZL}	Output Leakage				-70	ΠА	Мах	V _{I/O} = 0.5V (B _n , Parity)
	Current				-90	μυτ	max	$V_{I/O} = 0.5V (A_n)$
los	Output Short-Circuit		-60		-150	mA	Max	$V_{OUT} = 0V (A_n)$
	Current		-100		-225		max	$V_{OUT} = 0V (B_n, Parity, ERROR)$
ICEX	Output HIGH Leakage				250	μΑ	Max	$V_{OUT} = V_{CC} (\overline{ERROR})$
	Current				1.0	mA	Max	V _{OUT} = V _{CC} (B _n , Parity)
					2.0	mA	Max	$V_{OUT} = V_{CC} (A_n)$
I _{ZZ}	Bus Drainage Test				500	μΑ	0.0V	$V_{OUT} = 5.25V (A_n, B_n, Parity, \overline{ERROR})$
ICCH	Power Supply Current			101	125	mA	Max	V _O = HIGH
ICCL	Power Supply Current			112	150	mA	Max	V _O = LOW
I _{ccz}	Power Supply Current			109	145	mA	Max	V _O = HIGH Z

AC Electrical Characteristics									
Symbol	Parameter	$T_A = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_L = 50 \text{ pF}$			$T_A = -55^{\circ}C$ $V_{CC} =$ $C_L = 3$	to +125°C +5.0V 50 pF	$T_{A} = 0^{\circ}C \text{ to } +70^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$		Units
		Min	Тур	Max	Min	Мах	Min	Max	
t _{PLH}	Propagation Delay	2.5	4.5	8.0	2.5	9.5	2.5	9.0	20
t _{PHL}	A _n to B _n , B _n to A _n	3.0	4.9	7.5	3.0	8.5	3.0	8.0	115
t _{PLH}	Propagation Delay	6.5	10.1	14.0	5.5	18.0	6.0	16.0	20
t _{PHL}	A _n to Parity	7.0	10.9	15.0	5.5	20.5	6.0	16.5	115
t _{PLH}	Propagation Delay	4.5	7.8	11.0	4.0	14.0	4.0	13.0	20
t _{PHL}	ODD/EVEN to PARITY	4.5	8.8	12.0	4.5	16.5	4.5	13.5	115
t _{PLH}	Propagation Delay	4.5	7.5	11.0	4.0	14.0	4.0	13.0	
t _{PHL}	ODD/EVEN to ERROR	4.5	8.2	12.0	4.5	16.5	4.5	13.5	ns
t _{PLH}	Propagation Delay	8.0	14.0	20.5	7.5	27.0	7.5	23.0	ns
t _{PHL}	B _n to ERROR	8.0	15.0	21.5	7.5	28.5	7.5	23.5	
t _{PLH}	Propagation Delay	7.0	10.8	15.5	6.0	20.0	6.0	17.0	
t _{PHL}	PARITY to ERROR	7.5	11.8	16.5	6.5	22.0	7.5	18.5	ns
t _{PZH}	Output Enable Time	3.0	5.0	8.0	2.5	11.0	2.5	9.5	
t _{PZL}	OE to A _n /B _n	4.0	6.5	10.0	3.5	13.5	3.5	11.0	ns
t _{PHZ}	Output Disable Time	1.0	4.5	8.0	1.0	9.5	1.0	9.0	
t _{PLZ}	OE to A _n /B _n	1.0	4.9	7.5	1.0	8.5	1.0	8.0	ns
t _{PZH}	Output Enable Time	3.0	5.0	8.0	2.5	11.0	2.5	9.5	
t _{PZL}	OE to ERROR (Note 3)	4.0	7.7	10.0	3.5	13.5	3.5	11.0	ns
t _{PHZ}	Output Disable Time	1.0	4.5	8.0	1.0	9.5	1.0	9.0	
t _{PLZ}	OE to ERROR	1.0	4.9	7.5	1.0	8.5	1.0	8.0	ns
t _{PZH}	Output Enable Time	3.0	5.0	8.0	2.5	11.0	2.5	9.5	ns
t _{PZL}	OE to PARITY	4.0	7.7	10.0	3.5	13.5	3.5	11.0	
t _{PHZ}	Output Disable Time	1.0	4.6	8.0	1.0	9.5	1.0	9.0	ns
t _{PLZ}	OE to PARITY	1.0	5.1	7.5	1.0	8.5	1.0	8.0	

Note 3: These delay times reflect the 3-STATE recovery time only and not the signal time through the buffers or the parity check circuity. To assure VALID information at the ERROR pin, time must be allowed for the signal to propagate through the drivers (B to A), through the parity check circuitry (same as A to PARITY), and to the ERROR output after the ERROR pin has been enabled (Output Enable times). VALID data at the ERROR pin \geq (A to PARITY) + (Output Enable Time).

74F657

www.fairchildsemi.com

