

74ABT16541 **Truth Tables Functional Description** The ABT16541 contains sixteen non-inverting buffers with Inputs Outputs 3-STATE outputs. The device is byte (8 bits) controlled with each byte functioning identically, but independent of the OE 2 OE 1 I₀–I₇ O₀-O₇ other. The control pins can be shorted together to obtain L L L L full 16-bit operation. L L Н Н **Logic Diagrams** Н Х Х Ζ 0E₁ Х н Х Ζ OE, Inputs Outputs $\overline{\mathsf{OE}}_4$ OE 3 0₈-0₁₅ I₈–I₁₅ 0 L L L L L L н н To Seven Other Channels н Х Х Ζ Х Ζ н Х H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial Z = High Impedance To Seven Other Channels

Absolute Maximum Ratings(Note 1)

Storage Temperature	-65°C to +150°C
Ambient Temperature under Bias	-55°C to +125°C
Junction Temperature under Bias	-55°C to +150°C
$V_{\mbox{\scriptsize CC}}$ Pin Potential to Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to +7.0V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Any Output	
in the Disabled or	
Power-Off State	-0.5V to 5.5V
in the HIGH State	–0.5V to V_{CC}
Current Applied to Output	
in LOW State (Max)	twice the rated $\rm I_{OL}$ (mA)
DC Latchup Source Current	–500 mA
Over Voltage Latchup (I/O)	10V

Recommended Operating Conditions

Free Air Ambient Temperature	-40°C to +85°C
Supply Voltage	+4.5V to +5.5V
Minimum Input Edge Rate ($\Delta V/\Delta t$)	
Data Input	50 mV/ns
Enable Input	20 mV/ns

74ABT16541

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

2

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Param	eter	Min	Тур	Max	Units	V _{CC}	Conditions
VIH	Input HIGH Voltage		2.0			V		Recognized HIGH Signal
VIL	Input LOW Voltage				0.8	V _		Recognized LOW Signal
V _{CD}	Input Clamp Diode Voltag	e			-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH		2.5		-	V	Min	I _{OH} = -3 mA
	Voltage		2.0		- 63	v	Min	I _{OH} = -32 mA
V _{OL}	Output LOW Voltage				0.55	V	Min	I _{OL} = 64 mA
IIH	Input HIGH Current				1	^	May	V _{IN} = 2.7V (Note 3)
			$2 \rightarrow$		1	μA	Max	$V_{IN} = V_{CC}$
I _{BVI}	Input HIGH Current				7	μA	Max	V _{IN} = 7.0V
	Breakdown Test							
IIL	Input LOW Current				-1	μA	Max	V _{IN} = 0.5V (Note 3)
					-1	μΛ	IVIAX	$V_{IN} = 0.0V$
V _{ID}	Input Leakage Test		4.75			V	0.0	I _{ID} = 1.9 μA
								All Other Pins Grounded
I _{OZH}	Output Leakage Current				10	μA	0–5.5V	$V_{OUT} = 2.7V; \overline{OE}_n = 2.0V$
I _{OZL}	Output Leakage Current				-10	μA	0-5.5V	$V_{OUT} = 0.5V; \overline{OE}_n = 2.0V$
I _{OS}	Output Short-Circuit Curre	ent	-100		-275	mA	Max	$V_{OUT} = 0.0V$
I _{CEX}	Output HIGH Leakage Cu	rrent			50	μA	Max	$V_{OUT} = V_{CC}$
I _{ZZ}	Bus Drainage Test				100	μA	0.0	V _{OUT} = 5.5V
								All Other Pins GND
I _{CCH}	Power Supply Current				100	μA	Max	All Outputs HIGH
I _{CCL}	Power Supply Current				60	mA	Max	All Outputs LOW
I _{CCZ}	Power Supply Current				100	μA	Max	$\overline{OE}_n = V_{CC}$
								All Others at V _{CC} or GND
I _{CCT}	Additional I _{CC} /Input	Outputs Enabled			2.5	mA		$V_I = V_{CC} - 2.1V$
		Outputs 3-STATE			2.5	mA	Max	Enable Input $V_I = V_{CC} - 2.1 V$
		Outputs 3-STATE			50	μA		Data Input $V_I = V_{CC} - 2.1V$
								All Others at V _{CC} or GND
I _{CCD}	Dynamic I _{CC}	No Load				mA/		Outputs Open, $\overline{OE}_n = GND$
	(Note 3)				0.1	MHz	Max	One Bit Toggling,
								50% Duty Cycle
V _{OLP}	Quiet Output Maximum D	ynamic V _{OL}		0.4	0.7	V	5.0	$T_A = 25^{\circ}C$ (Note 4)
V _{OLV}	Quiet Output Minimum Dy	mamic V _{OL}	-1.3	-1.0		V	5.0	$T_A = 25^{\circ}C$ (Note 4)
V _{OHV}	Minimum HIGH Level Dyr	1 0	2.7	3.0		V	5.0	$T_A = 25^{\circ}C$ (Note 6)
VIHD	Minimum HIGH Level Dyr	amic Input Voltage	2.0	1.4		V	5.0	T _A = 25°C (Note 5)

74ABT16541

DC Electrical Characteristics (Continued)

Symbol	Parameter	Min	Тур	Max	Units	V _{cc}	Conditions	
V _{ILD}	Maximum LOW Level Dynamic Input Voltage		1.2	0.8	V	5.0	T _A = 25°C (Note 5)	
Note 3: Guaranteed but not tested.								

Note 4: Max number of outputs defined as (n). n-1 data inputs are driven 0V to 3V. One output at LOW. Guaranteed, but not tested.

Note 5: Max number of data inputs (n) switching. n-1 inputs switching 0V to 3V. Input-under-test switching: 3V to threshold (V_{ILD}), 0V to threshold (V_{IHD}). Guaranteed, but not tested.

Note 6: Max number of outputs defined as (n). n - 1 data inputs are driven 0V to 3V. One output HIGH. Guaranteed, but not tested.

AC Electrical Characteristics

Symbol	Parameter		T _A =+25°C V _{CC} =+5V C _L = 50 pF		$T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C$ $V_{CC} = 4.5V - 5.5V$ $C_{L} = 50 \text{ pF}$		Units
		Min	Тур	Max	Min	Max	
t _{PLH}	Propagation	1.0	2.3	3.4	1.0	3.4	
t _{PHL}	Delay Data to Outputs	1.0	2.7	3.9	1.0	3.9	ns
t _{PZH}	Output Enable	1.5	3.5	5.2	1.5	5.2	
t _{PZL}	Time	1.5	3.5	6.0	1.5	6.0	ns
t _{PHZ}	Output Disable	1.0	4.2	5.1	1.0	5.1	ns
t _{PLZ}	Time	1.0	3.2	5.1	1.0	5.1	

Extended AC Electrical Characteristics

				1 - Caller	A				
Symbol Parameter		-40°C to +85°C V _{CC} = 4.5V-5.5V C _L = 50 pF 16 Outputs Switching (Note 7)		$\label{eq:transform} \begin{array}{c} T_{A}=-40^{\circ}\text{C to }+85^{\circ}\text{C}\\ V_{CC}=4.5\text{V-}5.5\text{V}\\ C_{L}=250\text{ pF}\\ 1\text{ Output Switching}\\ (\text{Note 8}) \end{array}$		$\label{eq:transform} \left \begin{array}{c} T_{A} = -40^{\circ}\text{C} \ to \ +85^{\circ}\text{C} \\ V_{CC} = 4.5V{-}5.5V \\ C_{L} = 250\ pF \\ 16\ Outputs\ Switching \\ (Note\ 9) \end{array} \right $		Units	
		Min	Тур	Max	Min	Мах	Min	Max	
f _{TOGGLE}	Maximum Toggle Frequency		100						MHz
t _{PLH}	Propagation Delay	1.5		5.0	1.5	6.0	2.5	8.0	ns
t _{PHL}	Data to Outputs	1.5		5.3	1.5	6.0	2.5	8.0	115
t _{PZH}	Output Enable	1.5		6.5	2.5	7.8	2.5	9.5	20
t _{PZL}	Time	1.5		6.5	2.5	7.8	2.5	8.5	ns
t _{PHZ}	Output Disable	1.0		6.7	(Not	e 10)	(Not	e 10)	ns
t _{PLZ}	Time	1.0		6.7					

Note 7: This specification is guaranteed but not tested. The limits apply to propagation delays for all paths described switching in phase (i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.).

Note 8: This specification is guaranteed but not tested. The limits represent propagation delay with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load. This specification pertains to single output switching only.

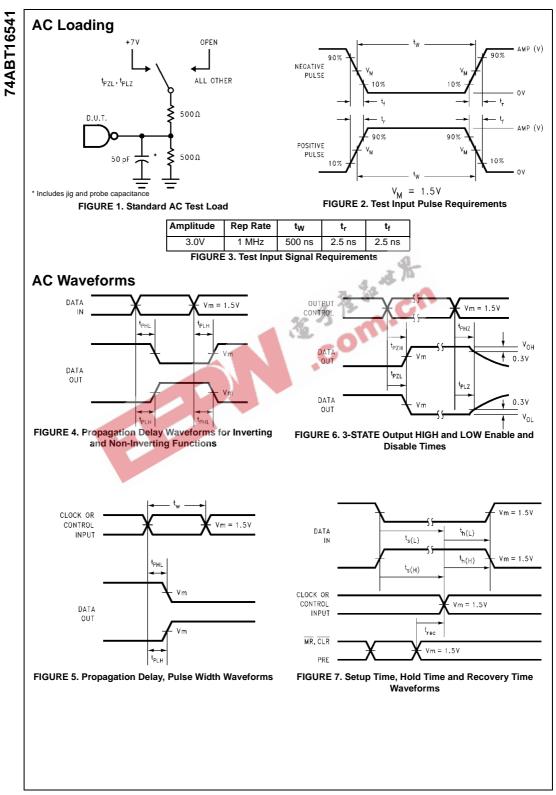
Note 9: This specification is guaranteed but not tested. The limits represent propagation delays for all paths described switching in phase (i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.) with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load.

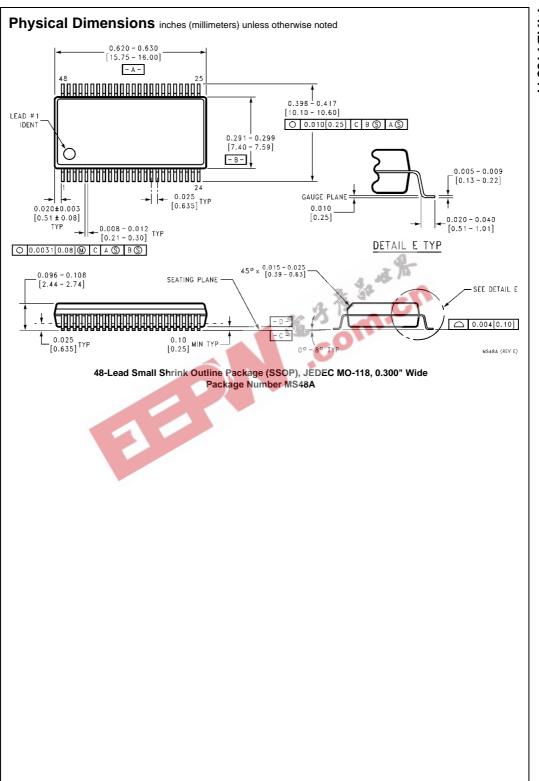
Note 10: The 3-STATE delay times are dominated by the RC network (500Ω, 250 pF) on the output and have been excluded from the datasheet.

Skew				
		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	T _A = -40°C to +85°C	
		V _{CC} = 4.5V–5.5V	V _{CC} = 4.5V–5.5V	Units
Symbol	Parameter	C _L = 50 pF 16 Outputs Switching	C _L = 250 pF 16 Outputs Switching	
		(Note 11)	(Note 12)	
		Max	Max	
t _{OSHL}	Pin to Pin Skew	1.0	1.5	ns
(Note 13)	HL Transitions	1.0	1.5	115
t _{OSLH}	Pin to Pin Skew	1.0	1.5	ns
(Note 13)	LH Transitions	1.0	1.5	115
t _{PS}	Duty Cycle	1.5	1.5	ns
(Note 14)	LH–HL Skew	1.5	1.5	ns
t _{ost}	Pin to Pin Skew	1.7	2.0	
(Note 13)	LH/HL Transitions	1.7	2.0	ns
t _{PV}	Device to Device Skew	2.0	2.5	ns
(Note 15)	LH/HL Transitions	2.0	2.5	115

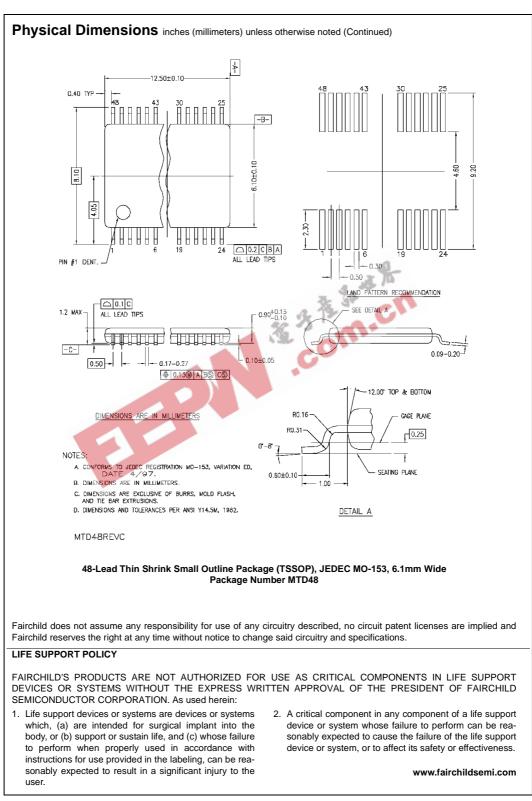
Note 11: This specification is guaranteed but not tested. The limits apply to propagation delays for all paths described switching in phase (i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.)

Note 12: These specifications guarance but not tested. The limits represent propagation delays with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load.


capacitors in the standard AC load. **Note 13:** Skew is defined as the absolute value of the difference between the actual propagation delays for any two separate outputs of the same device. The specification applies to any outputs switching HIGH-to-LOW (t_{OSHL}), LOW-to-HIGH (t_{OSHL}), or any combination switching LOW-to-HIGH and/or HIGHto-LOW (t_{OST}). The specification is guaranteed but not tested.


Note 14: This describes the difference between the delay of the LOW-to-HIGH and the HIGH-to-LOW transition on the same pin. It is measured across all the outputs (drivers) on the same chip, the worst (largest delta) number is the guaranteed specification. This specification is guaranteed but not tested. Note 15: Propagation delay variation for a given set of conditions (i.e., temperature and V_{CC}) from device to device. This specification is guaranteed but not tested.

Capacitance


Symbol	Parameter	Тур	Units	Conditions T _A = 25°C
C _{IN}	Input Capacitance	5.0	pF	$V_{CC} = 5.0V$
C _{OUT} (Note 16)	Output Capacitance	9.0	pF	$V_{CC} = 5.0V$

Note 16: C_{OUT} is measured at frequency f = 1 MHz; per MIL STD-883, Method 3012.

74ABT16541

