

SEMICONDUCTOR

74VHCT573A Octal D-Type Latch with 3-STATE Outputs

General Description

The VHCT573A is an advanced high speed CMOS octal latch with 3-STATE output fabricated with silicon gate CMOS technology. It achieves the high speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation. This 8-bit D-type latch is controlled by a Latch Enable input (LE) and an Output Enable input (OE). When the OE input is HIGH, the eight outputs are in a high impedance state.

Protection circuits ensure that 0V to 7V can be applied to the input and output (Note 1) pins without regard to the supply voltage. This device can be used to interface 3V to 5V systems and two supply systems such as battery back up. This circuit prevents device destruction due to mismatched supply and input voltages.

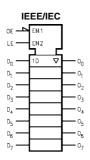
Note 1: Outputs in OFF-State.

Features

- High speed: t_{PD} = 7.7 ns (typ) at T_A = 25°C
- High Noise Immunity: V_{IH} = 2.0V, V_{IL} = 0.8V
- Power Down Protection is provided on all inputs and outputs

January 1998

Revised April 2005


- Low Noise: V_{OLP} = 1.6V (max)
- Low Power Dissipation: I_{CC} = 4 μA (max) @ T_A = 25°C
- Pin and function compatible with 74HCT573

Ordering Code:

Order Number	Package Number	Package Description
		o 1
74VHCT573AM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74VHCT573ASJ	M20D	Pb-Free 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74VHCT573AMTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74VHCT573AN	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
Surface mount package	s are also available on Ta	pe and Reel. Specify by appending the suffix letter "X" to the ordering code.

Pb-Free package per JEDEC J-STD-020B

Logic Symbol

Connection Diagram

© 2005 Fairchild Semiconductor Corporation DS500028

74VHCT573A

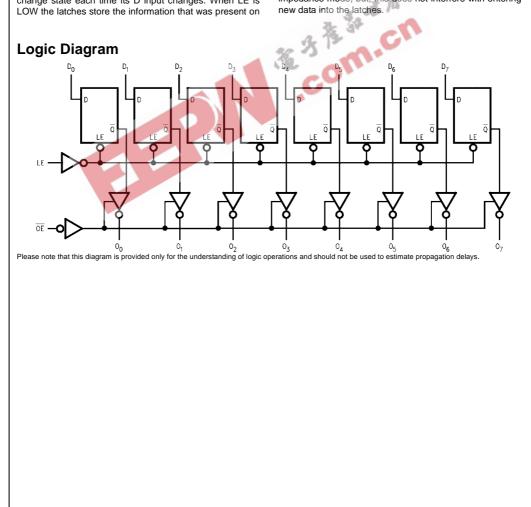
Pin Descriptions Pin Names Description

Pin Names	Description
D ₀ –D ₇	Data Inputs
	Latch Enable Input
OE	3-STATE Output Enable Input
O ₀ –O ₇	3-STATE Outputs

Truth Table

	Outputs		
OE	LE	D	O _n
L	Н	Н	Н
L	Н	L	L
L	L	Х	O ₀
Н	Х	Х	Z

H = HIGH Voltage Level L = LOW Voltage Level


L = LOW Voltage Level X = Immaterial

Z = High Impedance

Functional Description

The VHCT573A contains eight D-type latches with 3-STATE output buffers. When the Latch Enable (LE) input is HIGH, data on the D_n inputs enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time its D input changes. When LE is LOW the latches store the information that was present on

the D inputs, a setup time preceding the HIGH-to-LOW transition of LE. The 3-STATE buffers are controlled by the Output Enable (\overline{OE}) input. When \overline{OE} is LOW, the buffers are enabled. When \overline{OE} is HIGH the buffers are in the high impedance mode, but, this does not interfere with entering new data into the latches.

Absolute Maximum Ratings(Note 2)

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Voltage (VIN)	-0.5V to +7.0V
DC Output Voltage (V _{OUT})	
(Note 3)	–0.5V to V _{CC} + 0.5V
(Note 4)	-0.5V to +7.0V
Input Diode Current (I _{IK})	–20 mA
Output Diode Current (I _{OK}) (Note 5)	±20 mA
DC Output Current (I _{OUT})	±25 mA
DC V _{CC} /GND Current (I _{CC})	±75 mA
Storage Temperature (T _{STG})	-65°C to +150°C
Lead Temperature (T _L)	
(Soldering, 10 seconds)	260°C

Recommended Operating Conditions (Note 6)

Supply Voltage (V _{CC})	4.5V to +5.5V
Input Voltage (V _{IN})	0V to +5.5V
Output Voltage (V _{OUT})	
(Note 3)	0V to V _{CC}
(Note 4)	0V to 5.5V
Operating Temperature (T _{OPR})	-40°C to +85°C
Input Rise and Fall Time (t_r, t_f)	
$V_{CC} = 5.0V \pm 0.5V$	0 ns/V ~ 20 ns/V
Note 2: Absolute Maximum Ratings are values may be damaged or have its useful life impaire tions should be met, without exception, to ensur reliable over its power supply, temperature, and ables. Fairchild does not recommend operation of tions.	d. The databook specifica- e that the system design is d output/input loading vari-
Note 3: HIGH or LOW state. I_{OUT} absolute	maximum rating must be

observed. Note 4: When outputs are in OFF-State or when $V_{\mbox{CC}}=\mbox{OV}.$

S.

Note 5: $V_{OUT} < GND$, $V_{OUT} > V_{CC}$ (Outputs Active). Note 6: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

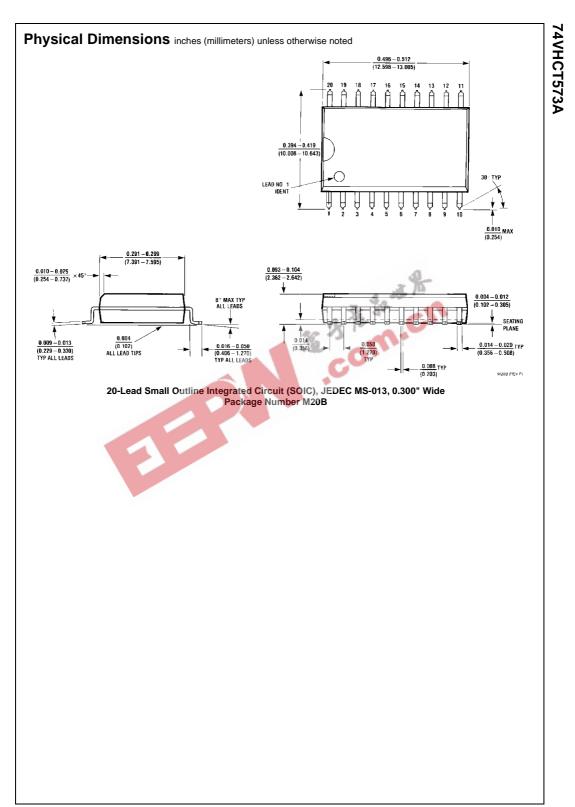
					38	*)	A 1	-		
Symbol	Parameter	v _{cc}			1.35	$T_{A} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}$			Conditions	
-,		(V)	Min	Тур	Max	Min	Max			
V _{IH}	HIGH Level	4.5	2.0			2.0		v		
	Input Voltage	5.5	2.0			2.0		v		
V _{IL}	LOW Level	4.5			0.8		0.8	v		
	Input Voltage	5.5			0.8		0.8	v		
V _{OH}	HIGH Level	4.5	4.40	4.50		4.40		V	V _{IN} = V _{IH} I _{OH} = -50 μA	
	Output Voltage	4.5	3.94			3.80		V	or V _{IL} I _{OH} = -8 mA	
V _{OL}	LOW Level	4.5		0.0	0.1		0.1	V	$V_{IN} = V_{IH}$ $I_{OL} = 50 \ \mu A$	
	Output Voltage	4.5			0.36		0.44	V	or V _{IL} I _{OL} = 8 mA	
I _{OZ}	3-STATE Output	5.5			±0.25		±2.5		$V_{IN} = V_{IH} \text{ or } V_{IL}$	
	Off-State Current	5.5			±0.25		±2.5	μA	$V_{OUT} = V_{CC} \text{ or } GND$	
I _{IN}	Input Leakage Current	0 - 5.5			±0.1		±1.0	μA	V _{IN} = 5.5V or GND	
I _{CC}	Quiescent Supply Current	5.5			4.0		40.0	μA	V _{IN} = V _{CC} or GND	
ICCT	Maximum I _{CC} /Input	5.5			1.35		1.50	mA	V _{IN} = 3.4V	
									Other Inputs = V_{CC} or GND	
I _{OFF}	Output Leakage Current	0.0			0.5		5.0	μA	$V_{OUT} = 5.5V$	
	(Power Down State)									

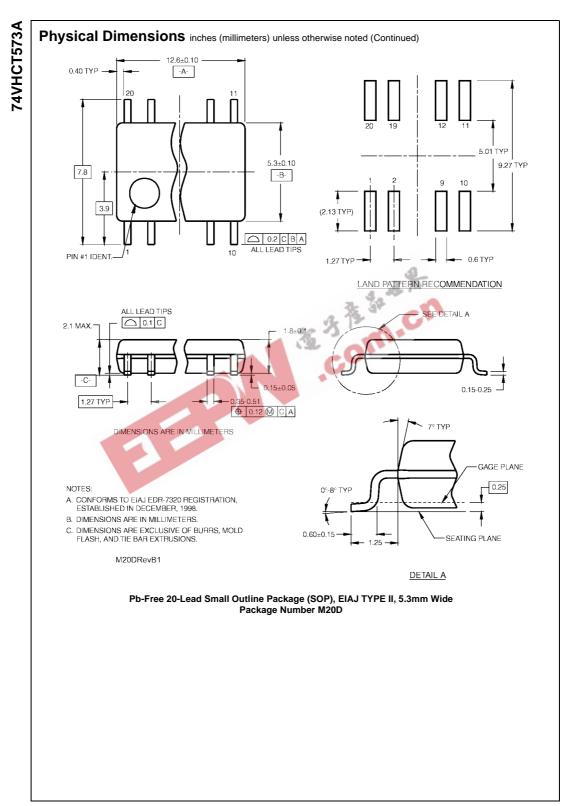
Noise Characteristics

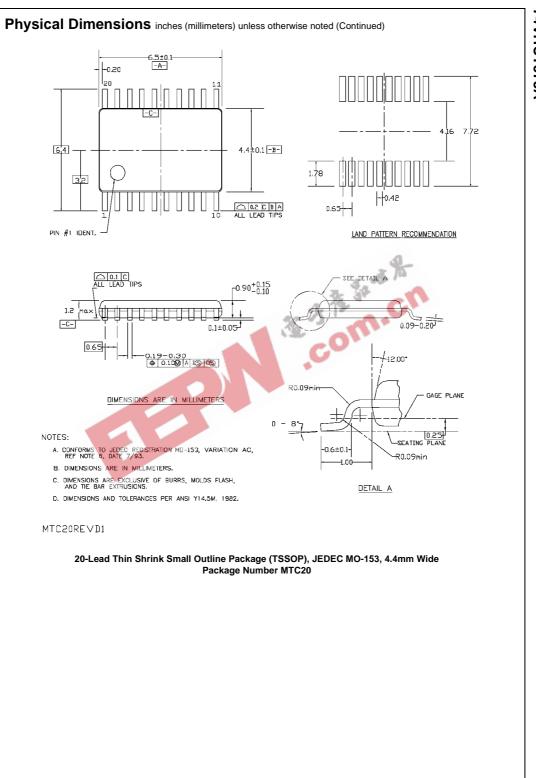
Symbol	Parameter	V _{cc}	T _A =	25°C	Units	Conditions
Gymbol	T arameter	(V)	Тур	Limits	Onita	Conditions
V _{OLP} (Note 7)	Quiet Output Maximum Dynamic V _{OL}	5.0	1.2	1.6	V	C _L = 50 pF
V _{OLV} (Note 7)	Quiet Output Minimum Dynamic V _{OL}	5.0	-1.2	-1.6	V	$C_L = 50 \text{ pF}$
V _{IHD} (Note 7)	Minimum HIGH Level Dynamic Input Voltage	5.0		2.0	V	$C_L = 50 \text{ pF}$
V _{ILD} (Note 7)	Maximum LOW Level Dynamic Input Voltage	5.0		0.8	V	C _L = 50 pF
Note 7: Par	ameter guaranteed by design.					

74VHCT573A

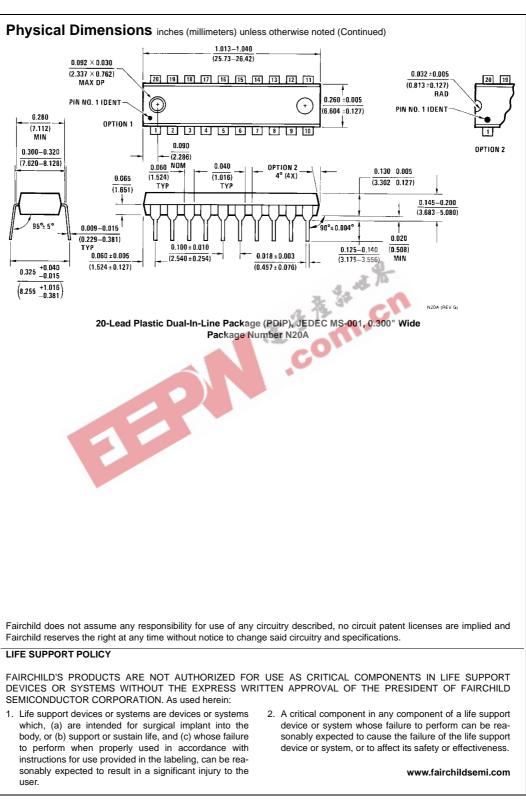
_
က
~
ŝ
⊢
C
Ť
÷
>
4
N


AC Electrical Characteristics


Symbol	Parameter	V _{cc}	$T_A = 25^{\circ}C$			T _A = -40°	C to +85°C	Units	Cor	ditions
Symbol	Falameter	(V)	Min	Тур	Max	Min	Max	Units	001	luitions
t _{PLH}	Propagation Delay Time	5.0 ± 0.5		7.7	12.3	1.0	13.5	ns		C _L = 15 pF
t _{PHL}	(LE to O _n)	J.0 ± 0.J		8.5	13.3	1.0	14.5	115		$C_L = 50 \text{ pF}$
t _{PLH}	Propagation Delay Time	5.0 ± 0.5		5.1	8.5	1.0	9.5	ns		C _L = 15 pF
t _{PHL}	(D to O _n)	5.0 ± 0.5		5.9	9.5	1.0	10.5	115		$C_L = 50 \text{ pF}$
t _{PZL}	3-STATE Output	5.0 ± 0.5		6.3	10.9	1.0	12.5	ns	$R_L = 1 \ k\Omega$	$C_L = 15 \text{ pF}$
t _{PZH}	Enable Time	5.0 ± 0.5		7.1	11.9	1.0	13.5	115		$C_L = 50 \text{ pF}$
t _{PLZ}	3-STATE Output	5.0 ± 0.5		8.8	11.2	1.0	12.0	ns	$R_L = 1 \ k\Omega$	$C_L = 50 \text{ pF}$
t _{PHZ}	Disable Time									
t _{OSLH}	Output to Output	5.0 ± 0.5			1.0		1.0	ns	(Note 8)	
t _{OSHL}	Skew									
CIN	Input Capacitance			4	10		10	pF	V _{CC} = Ope	n
COUT	Output Capacitance			6				pF	$V_{CC} = 5.0 V$	/
C _{PD}	Power Dissipation			25				pF	(Note 9)	
	Capacitance									


 $\textbf{Note 8:} Parameter guaranteed by design. t_{OSLH} = |t_{PLH max} - t_{PLH min}|; t_{OSHL} = |t_{PHL max} - t_{PHL min}|$

Note 5: Paraliteter guaranteed by design: $t_{OSLH} = |t_{PLH max} - t_{PLH min}|$, $t_{OSHL} = |t_{PLH max} - t_{PHL min}|$ Note 9: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC} (opr.) = $C_{PD} + V_{CC} + f_{IN} + I_{CC}/8$ (per F/F). The total C_{PD} when n pcs, of the Latch operates can be calculated by the equation: C_{PD} (total) = 14 + 13n. AC Operating Requirements


Symbol	Parameter	Vcc	T _A = 25°C			T _A = -40°	Units	
		(V)	Min	Тур	Max	Min	Max	Units
t _W (H)	Minimum Pulse Width (LE)	5.0 ± 0.5	6.5	-		8.5		ns
t _S	Minimum Setup Time	5.0 ± 0.5	1.5			1.5		ns
t _H	Minimum Hold Time	5.0 ± 0.5	3.5			3.5		ns
	EF							

74VHCT573A

