INTEGRATED CIRCUITS

Product specification Supersedes data of December 1990 File under Integrated Circuits, IC06 September 1993

FEATURES

- 8-pin space saving package
- Programmable 3-stage ripple counter
- Suitable for over-tone crystal application up to 50 MHz (V_{CC} = 5 V ± 10%)
- · 3-state output buffer
- Two internal capacitors
- Recommended operating range for use with third overtone crystals 3 to 6 V
- Oscillator stop function (MR)
- Output capability: bus driver → (15 LSTTL)
- I_{CC} category: MSI.

APPLICATIONS

- · Control counters
- Timers
- Frequency dividers
- Time-delay circuits
- CIO (Compact Integrated Oscillator)
- Third-overtone crystal operation.

GENERAL DESCRIPTION

The HC/HCT6323A are high-speed Si-gate CMOS devices.

They are specified in compliance with JEDEC standard no. 7A.

The HC/HCT6323A are oscillators designed for quartz crystal combined with a programmable 3-state counter, a 3-state output buffer and an overriding asynchronous master reset (MR). With the two select inputs S1 and S2 the counter can be switched in the divide-by-1, 2, 4 or 8 mode. If left floating the clock is divided by 8. The oscillator is designed to operate either in the fundamental or third overtone mode depending on the crystal and external components applied. On-chip capacitors minimize external component count for third overtone crystal applications.

The oscillator may be replaced by an external clock signal at input X1. In this event the other oscillator pin (X2) must be floating. The counter advances on the negative-going transition of X1. A LOW level on MR resets the counter, stops the oscillator

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25 \ ^{\circ}C$; $t_r = t_f = 6 \ ns$.

SYMBOL		CONDITIONS	T۱			
STWIDUL	PARAMETER	CONDITIONS	нс	нс нст		
t _{PHL} /t _{PLH}	propagation delay X1 to OUT (S1 = S2 = LOW)	C _L = 15 pF; V _{CC} = 5 V	17	17	ns	
f _{max}	maximum clock frequency		90	90	MHz	
CI	input capacitance except X1 and X2		3.5	3.5	pF	
CPD	power dissipation	+1; notes 1 and 2	54	54	pF	
	capacitance per	+2; notes 1 and 2	42	42	pF	
	раскаде	+4; notes 1 and 2	36	36	pF	
		+8; notes 1 and 2	33	33	pF	

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μ W):

 $P_D = (C_{PD} \times V_{CC}^2 \times f_i) + (C_L + V_{CC}^2 \times f_o) + (I_{pull-up} \times V_{CC})$ where:

 f_i = input frequency in MHz; f_o = output frequency in MHz.

 V_{CC} = supply voltage in V; C_L = output load capacitance in pF.

 $I_{pull-up} = pull-up$ currents in μA .

2. For HC and HCT an external clock is applied to X1 with:

 $t_r = t_f \le 6 \text{ ns}, V_i \text{ is GND to } V_{CC}, \overline{MR} = HIGH$

 $I_{pull-up}$ is the summation of $-I_{I}$ (μA) of S1 and S2 inputs at the LOW state.

ORDERING INFORMATION

EXTENDED TYPE	PACKAGE								
NUMBER	PINS	PIN POSITION	MATERIAL	CODE					
74HC/HCT6323AD	8	SO	plastic	SOT96					

74HC/HCT6323A

and sets the output buffer in the 3-state condition. $\overline{\text{MR}}$ can be left floating since an internal pull-up resistor will make the $\overline{\text{MR}}$ inactive. In the HCT version, the $\overline{\text{MR}}$ input and the two mode select pins S1 and S2 are TTL compatible, but the X1 input has CMOS input switching levels and may be driven by a TTL output using a pull-up resistor connected to V_{CC}.

74HC/HCT6323A

PINNING

SYMBOL	PIN	DESCRIPTION
OUT	1	counter output
S1 - S2	3, 2	mode select inputs for divide by 1, 2, 4 or 8
GND	4	ground (0 V)
MR	5	master reset (active LOW)
X2	6	oscillator pin
X1	7	clock input/oscillator pin
V _{CC}	8	positive supply

FUNCTION TABLE

INPU	JTS	OUTPUTS
S1	S2	OUT
0	0	f _i
0	1	f _i /2
1	0	f _i /4
1	1	f _i /8

74HC/HCT6323A

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: non-standard; bus driver (except for X2)

I_{CC} category: MSI.

Voltages are referenced to GND (ground = 0 V).

DC CHARACTERISTICS FOR 74HC

				-	Γ _{amb} (°C	;)					TEST CON	DITION
SYMBOL	PARAMETER		25		-40	to 85	-40 to 125 U			Vcc	N N	
		MIN	IN TYP MAX MIN		MIN	MAX	MAX MIN			(V)	v _i	OTHER
V _{IH}	HIGH level input voltage MR, X1 input	1.5 3.15 4.2	1.2 2.4 3.2	- - -	1.5 3.15 4.2	- - -	1.50 3.15 4.20	- 40	V V V	2.0 4.5 6.0		
V _{IL}	LOW level input voltage MR, X1 input	- - -	0.8 2.1 2.8	0.5 1.35 1.80	- - -	0.5 1.35 1.8	3	0.5 1.35 1.8	V V V	2.0 4.5 6.0		
V _{OH}	HIGH level output voltage X2 output	3.98 5.48	-		3.84 5.34	-	3. 7 5.2	-	V V	4.5 6.0	X1 = GND and $\overline{MR} = V_{CC}$	$I_{O} = -2.6 \text{ mA}$ $I_{O} = -3.3 \text{ mA}$
		3.98 5.48	-	-	3.84 5.34	_	3.7 5.2	-	V V	4.5 6.0	$X1 = V_{CC}$ and $\overline{MR} = GND$	$I_{O} = -2.6 \text{ mA}$ $I_{O} = -3.3 \text{ mA}$
		1.9 4.4 5.9	2.0 4.5 6.0	- - -	1.9 4.4 5.9	- - -	1.9 4.4 5.9	- - -	V V V	2.0 4.5 6.0	X1 = GND and MR = V _{CC}	-I _O = 20 μA I _O = -20 μA I _O = -20 μA
		1.9 4.4 5.9	2.0 4.5 6.0	- - -	1.9 4.4 5.9	- - -	1.9 4.4 5.9	_ _ _	V V V	2.0 4.5 6.0	$X1 = V_{CC}$ and $\overline{MR} = GND$	I _O = -20 μA I _O = -20 μA I _O = -20 μA
V _{OH}	HIGH level output voltage OUT	1.9 4.4 5.9	2.0 4.5 6.0	- - -	1.9 4.4 5.9	- - -	1.9 4.4 5.9	- - -	V V V	2.0 4.5 6.0	V _{IH} or V _{IL}	I _O = -20 μA I _O = -20 μA I _O = -20 μA
V _{OH}	HIGH level output voltage OUT	3.98 5.48	-	-	3.84 5.34		3.7 5.2	_	V V	4.5 6.0	V _{IH} or V _{IL}	$I_{O} = -6 \text{ mA}$ $I_{O} = -7.8 \text{ mA}$
V _{OL}	LOW level output voltage X2 output		-	0.26 0.26	-	0.33 0.33	_	0.4 0.4	V V	4.5 6.0	$\begin{array}{l} X1 = V_{CC} \\ and \\ \overline{MR} = V_{CC} \end{array}$	I _O = 2.6 mA I _O = 3.3 mA
		_ _ _	0 0 0	0.1 0.1 0.1	_ _ _	0.1 0.1 0.1	-	0.1 0.1 0.1	V V V	2.0 4.5 6.0	$\begin{array}{l} X1 = V_{CC} \\ and \\ \overline{MR} = V_{CC} \end{array}$	$I_{O} = 20 \ \mu A$ $I_{O} = 20 \ \mu A$ $I_{O} = 20 \ \mu A$
V _{OL}	LOW level output voltage OUT	_ _ _	0 0 0	0.1 0.1 0.1	_ _ _	0.1 0.1 0.1	_ _ _	0.1 0.1 0.1	V V V	2.0 4.5 6.0	V _{IH} or V _{IL}	$I_{O} = 20 \ \mu A$ $I_{O} = 20 \ \mu A$ $I_{O} = 20 \ \mu A$

74HC/HCT6323A

			T _{amb} (°C)								TEST CONDITION			
SYMBOL	PARAMETER	25			–40 to 85		-40 to 125				V			
		MIN	ТҮР	MAX	MIN	MAX	MIN	MAX		(V)	VI	UTHER		
V _{OL}	LOW level output voltage OUT	-	_	0.26 0.26	_	0.33 0.33	_	0.4 0.4	V V	4.5 6.0	V _{IH} or V _{IL}	I _O = 6 mA I _O = 7.8 mA		
±lLI	input leakage current X1	-	-	0.1	_	1	_	1	μA	6.0	$\overline{MR} = V_{CC}$ $S1 = V_{CC}$ $S2 = V_{CC}$			
I ₁	input pull-up current S1, S2 and MR	5	30	100	_	_	_	-	μA	6.0	GND	see Fig.11 and Fig.12		
I _{CC}	quiescent supply current	-	-	8	_	80	-	160	μA	6.0	V _{CC} or GND	I _O = 0		

74HC/HCT6323A

Product specification

AC CHARACTERISTICS FOR 74HC

 $GND = 0 \text{ V}; t_r = t_f = 6 \text{ ns}; C_L = 50 \text{ pF}.$

				Т	amb (°C	C)				TEST CONDITION			
SYMBOL	PARAMETER		25		-40	to 85	_40 t	o 125		Vcc	v	OTHER	
		MIN	TYP	MAX	MIN	MAX	MIN	MAX		(V)	VI	OTHER	
t _{PHL} /t _{PLH}	propagation delay X1 to OUT divide by 1	_ _ _	61 22 19	185 37 31	- - -	230 46 39	_ _ _	275 55 47	ns ns ns	2.0 4.5 6.0	Fig.7	S1 = GND S2 = GND	
t _{PHL} /t _{PLH}	propagation delay X1 to OUT divide by 2	_ _ _	74 27 23	235 47 40	_ _ _	290 58 49	_ _ _	350 70 60	ns ns ns	2.0 4.5 6.0	Fig.7	S1 = GND S2 = V _{CC}	
t _{PHL} /t _{PLH}	propagation delay X1 to OUT divide by 4	_ _ _	91 33 28	285 57 48	_ _ _	355 71 60	_ _ _	425 85 72	ns ns ns	2.0 4.5 6.0	Fig.7	S1 = V _{CC} S2 = GND	
t _{PHL} /t _{PLH}	propagation delay X1 to OUT divide by 8	_ _ _	105 38 32	335 67 57	- - -	415 83 71	3	500 100 85	ns n <mark>s</mark> ns	2.0 4.5 6.0	Fig.7	$S1 = V_{CC}$ $S2 = V_{CC}$	
t _{PLZ} /t _{PHZ}	3-state output disable time MR to OUT	_ _ _	75 15 13	150 30 26		185 37 31	<u>.</u>	225 45 38	ns ns ns	2.0 4.5 6.0	Fig.8		
t _{PZL}	3-state output enable time MR to OUT	-	36 13 11	150 30 26	-	185 37 31	_ _ _	225 45 38	ns ns ns	2.0 4.5 6.0	Fig.8		
t _{PZH}	3-state output enable time MR to OUT		61 22 19	200 40 34	- - -	250 50 43	_ _ _	300 60 51	ns ns ns	2.0 4.5 6.0	Fig.8	note 1	
t _{THL} /t _{TLH}	output transition time	_ _ _	14 5 4	60 12 10	_ _ _	75 15 13	_ _ _	90 19 15	ns ns ns	2.0 4.5 6.0	Fig.7		
t _W	clock pulse width X1, HIGH or LOW	50 10 9	17 6.0 5	_ _ _	60 12 10	- - -	75 15 13	_ _ _	ns ns ns	2.0 4.5 6.0	Fig.7		
t _W	master reset pulse width MR; LOW	80 16 14	22 8 7	_ _ _	100 20 17	- - -	120 24 20	_ _ _	ns ns ns	2.0 4.5 6.0	Fig.9		
t _{rem}	removal time MR to X1	100 20 17	19 7 6.0	_ _ _	125 25 21	_ _ _	150 30 26	_ _ _	ns ns ns	2.0 4.5 6.0	Fig.9		
f _{max}	maximum clock pulse frequency	10 50 59	17 85 100	_ _ _	8 40 47	_ _ _	6.6 33 39	_ _ _	MHz MHz MHz	2.0 4.5 6.0	Fig.7		

Note to the 74HC AC Characteristics

1. t_{PZH} only applicable in the divide-by-1 mode and X1 must be HIGH.

74HC/HCT6323A

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: bus driver (except for X2).

I_{CC} category: MSI.

Voltages are referenced to GND (ground = 0 V).

	PARAMETER	T _{amb} (°C)								TEST CONDITION			
SYMBOL			25		-40	to 85	_40 t	o 125	UNIT	V _{cc}	V		
		MIN	ТҮР	MAX	MIN	MAX	MIN	MAX]	(V)	VI	UTHER	
V _{IH}	HIGH level input voltage MR, S1 and S2 inputs	2.0	_	_	2.0	_	2.0	- 44	V	4.5 to 5.5			
V _{IL}	LOW level input voltage MR, S1 and S2 inputs	_	_	0.8	-	0.8	3	0.8	v	4.5 to 5.5			
V _{IH}	HIGH level input voltage X1 input	3.15 3.85			3.15 3.85	-	3.15 3.85	_	V V	4.5 5.5			
V _{IL}	LOW level input voltage X1 input		-	1.35 1.65	_	1.35 1.65	_	1.35 1.65	V V	4.5 5.5			
V _{OH}	HIGH level output voltage X2 output	3.98	-	-	3.84	-	3.7	-	V	4.5	$\begin{array}{l} X1 = GND\\ and\\ \overline{MR} = V_{CC} \end{array}$	I _O = -2.6 mA	
		3.98	-	_	3.84	-	3.7	-	V	4.5	$\begin{array}{l} X1 = V_{CC} \\ and \\ \overline{MR} = GND \end{array}$	I _O = -2.6 mA	
		4.4	4.5	_	4.4	-	4.4	-	V	4.5	X1 = GND and MR = V _{CC}	I _O = -20 μA	
		4.4	4.5	_	4.4	-	4.4	-	V	4.5	$\begin{array}{l} X1 = V_{CC} \\ and \\ \overline{MR} = GND \end{array}$	I _O = -20 mA	
V _{OH}	HIGH level output voltage OUT	4.4	4.5	-	4.4	-	4.4	-	V	4.5	V _{IH} or V _{IL}	I _O = -20 μA	
V _{OH}	HIGH level output voltage OUT	3.98	-	_	3.84	-	3.7	-	V	4.5	V _{IH} or V _{IL}	I _O = -6 mA	

74HC/HCT6323A

		T _{amb} (°C)								TEST CONDITION			
SYMBOL	PARAMETER		25			-40 to 85		-40 to 125		Vcc			
		MIN	ТҮР	MAX	MIN	MAX	MIN	MAX		(V)	VI	OTHER	
V _{OL}	LOW level output voltage X2	_	_	0.26	-	0.33	_	0.4	V	4.5	$\begin{array}{l} X1 = V_{CC} \\ and \\ \overline{MR} = V_{CC} \end{array}$	I _O = 2.6 mA	
	output	_	0	0.1	-	0.1	_	0.1	V	4.5	$\begin{array}{l} X1 = V_{CC} \\ and \\ \overline{MR} = V_{CC} \end{array}$	I _O = 20 μA	
V _{OL}	LOW level output voltage OUT	_	0	0.1	-	0.1	_	0.1	V	4.5	V _{IH} or V _{IL}	I _O = 20 μA	
V _{OL}	LOW level output voltage OUT	_	_	0.26	-	0.33	-	0.4	V	4.5	V _{IH} or V _{IL}	I _O = 6 mA	
±lLI	input leakage current	_	_	0.1	-	1.0	3	1.0	μA	5.5	$\overline{MR} = V_{CC;}$ $S1 = V_{CC;}$ $S2 = V_{CC}$		
-l _l	input pull-up current S1, S2 and MR	5	25	100			-0	-	μA	5.5	GND	see Fig.11 and Fig.12	
I _{CC}	quiescent supply current	-		8	-	80	-	160	μA	5.5	V _{CC} or GND	l _o = 0	
ΔI _{CC}	additional quiescent supply current per input pin for unit load coefficient is 1	C	100	360	_	450	_	490	μΑ	5.5	V _{CC} or GND	other inputs at V_{CC} or GND; $I_0 = 0$; (note 1)	

Note to the HCT DC Characteristics

1. The value of additional quiescent supply current (ΔI_{CC}) for unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

UNIT LOAD COEFFICIENT

INPUT	UNIT LOAD COEFFICIENT
<u>MR</u> , S1, S2	0.40

74HC/HCT6323A

Product specification

AC CHARACTERISTICS FOR 74HCT

 $GND = 0 \text{ V}; t_r = t_f = 6 \text{ ns}; C_L = 50 \text{ pF}$

				Т	amb (°C	C)				TEST CONDITION			
SYMBOL	PARAMETER		25		-40	to 85	_40 t	o 125		Vcc	V.	OTHER	
		MIN	TYP	MAX	MIN	MAX	MIN	MAX		(V)	VI	OTHER	
t _{PHL} /t _{PLH}	propagation delay X1 to OUT divide-by-1	_	24	40	_	50	-	60	ns	4.5	Fig.7	S1 = GND S2 = GND	
t _{PHL} /t _{PLH}	propagation delay X1 to OUT divide-by-2	_	29	50	_	62	_	75	ns	4.5	Fig.7	S1 = GND S2 = V _{CC}	
t _{PHL} /t _{PLH}	propagation delay X1 to OUT divide-by-4	_	35	60	_	75	3	90	ns	4.5	Fig.7	S1 = V _{CC} S2 = GND	
t _{PHL} /t _{PLH}	propagation delay X1 to OUT divide-by-8	_	40	70		87		105	ns	4.5	Fig.7	$S1 = V_{CC}$ $S2 = V_{CC}$	
t _{PLZ} /t _{PHZ}	3-state output disable time MR to OUT		21	35		43	_	52	ns	4.5	Fig.8		
t _{PZ}	3-state output enable time MR to OUT	-	16	30	_	37	_	45	ns	4.5	Fig.8		
t _{PZH}	3-state output enable time MR to OUT	_	22	38	_	47	-	57	ns	4.5	Fig.8	see note 1	
t _{THL} /t _{TLH}	output transition time	-	5	12	-	15	-	19	ns	4.5	Fig.7		
t _W	clock pulse width X1, HIGH or LOW	10	6	-	12	-	15	-	ns	4.5	Fig.7		
t _W	master reset pulse width MR; LOW	16	8	-	20	-	24	-	ns	4.5	Fig.9		
t _{rem}	removal time MR to X1	24	12		30	-	36	_	ns	4.5	Fig.9		
f _{max}	maximum clock pulse frequency	50	85	-	40	-	33	-	MHz	4.5	Fig.7		

Note to the 74HCT AC Characteristics

1. t_{PZH} only applicable in the divide-by-1 mode and X1 must be HIGH.

4.7

Programmable ripple counter with oscillator; 3-state

74HC/HCT6323A

APPLICATION INFORMATION

3

 $V_{I} = 0 V$

4

⁵V_{CC} (V)

6

20

10

0

1

2

50

3.0

Typical Crystal Oscillator

In Fig.13, R2 is the power limiting resistor. For starting and maintaining oscillation a minimum transconductance is necessary, so R2 should not be too large. A practical value for R2 is $2.2 \text{ k}\Omega$.

The oscillator has been designed to operate over a wide frequency spectrum, for quartz crystals operating in the fundamental mode and in the overtone mode. The circuit is a Pierce type oscillator and requires a minimum of external components. There are two on-chip capacitors, X1 and X2, of approximately 7 pF. Together with the stray and input capacitance the value becomes 12 pF for 8-pin SO packages. These values are convenient and make it possible to run the oscillator in the third overtone without external capacitors applied. If a certain frequency is chosen, the IC parameters, as forward transconductance, and the crystal parameters such as the motional resistances R1 (fundamental), R3 (third overtone) and R5 (fifth overtone), are of paramount importance. Also the values of the external components as R_s (series resistance) and the crystal load capacitances play an important role. Especially in overtone mode oscillations, R_b (bias resistance) and the load capacitance values are very important.

Considerations for Fundamental Oscillator:

In the fundamental oscillator mode, the R_b has only the function of biasing the inverter stage, so that it operates as an amplifier with a phase shift of approximately 180°. The value must be high, i.e. 100 k Ω up to 10 M Ω . The load capacitors C1 and C2, must have a value that is suitable for the crystal being used. The crystal is designed for a certain frequency having a specific load capacitance. C1 can be used to trim the oscillation frequency. The series resistance reduces the total loop gain. One function of it is therefore to reduce the power dissipation in the crystal. R_s also suppresses overtone oscillations and introduces a phase shift over a broad frequency range. This is of less concern provided Rs is not too high a value

Note

A combination of a small load capacitor value and a small series resistance, may cause a third overtone oscillation.

Considerations for Third-overtone

74HC/HCT6323A

Oscillator:

In the overtone configuration, series resistance is no longer applied. This is essential otherwise the gain for third overtone can be too small for oscillation. A simple solution to suppress the fundamental oscillation, is to spoil the crystal fundamental activity. By dramatically reducing the value of the bias resistor of the inverting stage, and applying small load capacitors, it is possible to have an insufficient phase in the total loop for fundamental oscillation. However the phase for third overtone is good. It can be explained by the $R_b \times C_l$ time constant. During oscillation the crystal with the load capacitors cause a phase shift of 180°. Because R_b is parallel with the crystal (no R_s), R_b spoils the phase for fundamental. $R_b \times C_l$ must be of a value, that it is not spoiling the phase for third overtone too much. Because third overtone is a 3 times higher frequency than the fundamental, the $R_b \times C_l$ cannot 'maintain' the higher third overtone frequency, which results in a less spoiled overtone phase.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".